Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Self-Stretching Material Developed at University of Rochester

17.02.2015

No limit to number of times material can change shape

Although most materials slightly expand when heated, there is a new class of rubber-like material that not only self-stretches upon cooling; it reverts back to its original shape when heated, all without physical manipulation.

The findings were recently published in the journal ACS Macro Letters.

The material is like a shape-memory polymer because it can be switched between two different shapes. “However, unlike other shape-memory polymers, the material does not need to be programmed each cycle—it repeatedly switches shapes, with no external forces, simply upon cooling and heating,” said Mitchell Anthamatten, an associate professor of chemical engineering.

Anthamatten and his team built on the success of a recently developed polymer that can also stretch when cooled. The other polymers need to have small loads—or weights—attached in order to direct the shape to be taken. That is not the case with the Rochester polymer, because Anthamatten’s team “tricked it into thinking” a load was attached.

To carry out their strategy, the researchers introduced permanent stress inside the material. They began with polymer strands that were loosely connected by bonds called crosslinks that create a network of molecules. The material was stretched with a load attached to give it the desired shape. At that point, they added more crosslinks and cooled the polymer, causing crystallization to occur along a preferred direction.

Anthamatten’s team showed that internal crystallization forces are strong enough to stretch the material along one direction. Once cooled below about 50 °C, polymer chain segments pack into highly ordered micro-layers called lamellae. This reorganization occurs within a network of polymer chains, causing the material’s length to increase by over 15 percent.

“The stress we built into the network takes the place of the load and enables the material to ‘remember’ the shape it will assume when it’s later cooled without a load,” said Anthamatten.

Conventional shape-memory polymers need to be reprogrammed after each cycle, but that’s not the case with the material developed by Anthamatten and his team. After multiple cycles of cooling and heating, they found that the material assumed its programmed shape and returned to its initial state with no noticeable deviation.

Anthamatten envisions the material being applied to a number of areas in which reversible shape-changes are needed during operations, including biotechnology, artificial muscles, and robotics.

“The next step is to optimize the shape of the polymer material and the energy released during the process,” said Anthamatten. “That will be done by adjusting the type and density of crosslinks that tie the individual chains together.”

The research team included two of Anthamatten’s students—Yuan Meng and Jisu Jiang. The work was supported internally by the University of Rochester’s Pump Primer Seed Grant Program, which exists to support proof-of-concept studies.

Contact Information
Peter Iglinski
Senior Press Officer, Science & Public Media
peter.iglinski@rochester.edu
Phone: 585-273-4726
Mobile: 585-764-7002

Peter Iglinski | newswise
Further information:
http://www.rochester.edu/news/

More articles from Materials Sciences:

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

nachricht Wonder material? Novel nanotube structure strengthens thin films for flexible electronics
24.04.2017 | University of Illinois College of Engineering

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>