Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Predicts When, How Materials Will Act

02.03.2015

Research highlighted as a top story for 2014

In science, it’s commonly known that materials can change in a number of ways when subjected to different temperatures, pressures or other environmental forces.


Florida State University

William Oates, associate professor of mechanical engineering

A material might melt or snap in half. And for engineers, knowing when and why that might happen is crucial information.

Now, a Florida State University researcher has laid out an overarching theory that explains why certain materials act the way they do. And the work has been included as one of the highlights of the past year in a top materials science journal, Smart Materials and Structures.

“The basic idea is if I was going to tell you that I can predict that this piece of material is going to break and you asked me how confident I am this is really true, we have to resort to statistics and probability,” said William Oates, associate professor of mechanical engineering at the FAMU-FSU College of Engineering. “Ultimately, we would like to say that this material has a 5 percent probability of breaking, for example.”

For Oates’ paper, he specifically examined ferroelectric materials. Ferroelectric materials are materials that experience spontaneous electric polarization, meaning the positive and negative charges occur in opposite directions and can also be reversed. Importantly, the change in charge also produces a shape change that provides a novel material that can be used as an actuator or a sensor or both simultaneously.

Ferroelectric materials are commonly used in the biomedical industry for viewing inside the body using ultrasound imaging. Scientists are also trying to use them for new solar cells.

“The material is pretty pervasive in a number of fields,” Oates said. “So understanding how the material behaves and trying to come up with new compositions is a pretty active area of research.”

Like many scientific endeavors, nothing came easy. His original paper laid out a significantly different theory and was rejected by the journal, so he had to completely go back to the drawing board.

He then stumbled across a quantum theorem and began working with it, comparing quantum simulations of electronic structures with continuum theories often used in engineering design.

It gave him the answers he needed and a stronger backing for a more unified continuum theory that is much faster to calculate relative to quantum mechanics. However, continuum approximations still contain uncertainty.

To address this issue, he used a special statistical method, known as Bayesian statistics, to quantify confidence in the model’s predictive power.

“With this new tool, we can apply it to all sorts of materials and basically quantify how good are we as engineers at approximating nature without spending countless numbers of hours on a computer,” Oates said.

Contact Information
Kathleen Haughney
Research Media & Content Specialist
khaughney@fsu.edu
Phone: 850-644-1489

Kathleen Haughney | newswise
Further information:
http://www.fsu.edu/

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>