Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New perovskite research discoveries may lead to solar cell, LED advances

08.09.2016

"Promising" and "remarkable" are two words U.S. Department of Energy's Ames Laboratory scientist Javier Vela uses to describe recent research results on organolead mixed-halide perovskites.

Perovskites are optically active, semiconducting compounds that are known to display intriguing electronic, light-emitting and chemical properties. Over the last few years, lead-halide perovskites have become one of the most promising semiconductors for solar cells due to their low cost, easier processability and high power conversion efficiencies. Photovoltaics made of these materials now reach power conversion efficiencies of more than 20 percent.


This image is a rendition of a one-dimensional, needle-like nanocrystal, such as the one prepared by Vela in collaboration with scientists Emily Smith and Jacob Petrich. Vela's team has prepared a family of highly luminescent perovskite nanocrystals with shape correlated emission.

Credit: Ames Laboratory

Vela's research has focused on mixed-halide perovskites. Halides are simple and abundant, negatively charged compounds, such as iodide, bromide and chloride. Mixed-halide perovskites are of interest over single-halide perovskites for a variety of reasons. Mixed-halide perovskites appear to benefit from enhanced thermal and moisture stability, which makes them degrade less quickly than single-halide perovskites, Vela said. He added they can be fine-tuned to absorb sunlight at specific wavelengths, which makes them useful for tandem solar cells and many other applications, including light emitting diodes (LEDs).Using these compounds, scientists can control the color and efficiency of such energy conversion devices.

Speculating that these enhancements had something to do with the internal structure of mixed-halide perovskites, Vela, who is also an associate professor of chemistry at Iowa State University (ISU), worked with scientists with expertise in solid-state nuclear magnetic resonance (NMR) at both Ames Laboratory and ISU. NMR is an analytical chemistry technique that provides scientists with physical, chemical, structural and electronic information about complex samples.

"Our basic question was what it is about these materials in terms of their chemistry, composition, and structure that can affect their behavior," said Vela.

Scientists found that depending on how the material is made there can be significant nonstoichiometric impurities or "dopants" permeating the material, which could significantly affect the material's chemistry, moisture stability and transport properties.

The answers came via the combination of the use of optical absorption spectroscopy, powder X-ray diffraction and for the first time, the advanced probing capabilities of lead solid-state NMR.

"We were only able to see these dopants, along with other semicrystalline impurities, through the use of lead solid-state NMR," said Vela.

Another major discovery scientists made was that solid state synthesis is far superior to solution-phase synthesis in making mixed-halide perovskites. According to Vela, the advanced spectroscopy and materials capabilities of Ames Laboratory and ISU were critical in understanding how various synthetic procedures affect the true composition, speciation, stability and optoelectronic properties of these materials.

"We found you can make clean mixed halide perovskites without semi-crystalline impurities if you make them in the absence of a solvent," Vela said.

According to Vela, the significance of their findings is multifold and they are only beginning to grasp the implications of those findings.

"One obvious implication is that our understanding of the amazing opto-electronic properties of these semiconductors was incomplete," said Vela. "We're dealing with a compound that is not inherently as simple as people thought."

The research is further discussed in a paper, "Persistent Dopants and Phase Segregation in Organolead Mixed-Halide Perovskites," authored by Vela, Bryan A. Rosales, Long Men, Sarah D. Cady, Michael P. Hanrahan, and Aaron J. Rossini; and published online in Chemistry Materials. The work was supported by DOE's Office of Science.

###

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Steve karsjen | EurekAlert!

Further reports about: LED dopants semiconductors solar cell solar cells spectroscopy

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>