Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New perovskite research discoveries may lead to solar cell, LED advances

08.09.2016

"Promising" and "remarkable" are two words U.S. Department of Energy's Ames Laboratory scientist Javier Vela uses to describe recent research results on organolead mixed-halide perovskites.

Perovskites are optically active, semiconducting compounds that are known to display intriguing electronic, light-emitting and chemical properties. Over the last few years, lead-halide perovskites have become one of the most promising semiconductors for solar cells due to their low cost, easier processability and high power conversion efficiencies. Photovoltaics made of these materials now reach power conversion efficiencies of more than 20 percent.


This image is a rendition of a one-dimensional, needle-like nanocrystal, such as the one prepared by Vela in collaboration with scientists Emily Smith and Jacob Petrich. Vela's team has prepared a family of highly luminescent perovskite nanocrystals with shape correlated emission.

Credit: Ames Laboratory

Vela's research has focused on mixed-halide perovskites. Halides are simple and abundant, negatively charged compounds, such as iodide, bromide and chloride. Mixed-halide perovskites are of interest over single-halide perovskites for a variety of reasons. Mixed-halide perovskites appear to benefit from enhanced thermal and moisture stability, which makes them degrade less quickly than single-halide perovskites, Vela said. He added they can be fine-tuned to absorb sunlight at specific wavelengths, which makes them useful for tandem solar cells and many other applications, including light emitting diodes (LEDs).Using these compounds, scientists can control the color and efficiency of such energy conversion devices.

Speculating that these enhancements had something to do with the internal structure of mixed-halide perovskites, Vela, who is also an associate professor of chemistry at Iowa State University (ISU), worked with scientists with expertise in solid-state nuclear magnetic resonance (NMR) at both Ames Laboratory and ISU. NMR is an analytical chemistry technique that provides scientists with physical, chemical, structural and electronic information about complex samples.

"Our basic question was what it is about these materials in terms of their chemistry, composition, and structure that can affect their behavior," said Vela.

Scientists found that depending on how the material is made there can be significant nonstoichiometric impurities or "dopants" permeating the material, which could significantly affect the material's chemistry, moisture stability and transport properties.

The answers came via the combination of the use of optical absorption spectroscopy, powder X-ray diffraction and for the first time, the advanced probing capabilities of lead solid-state NMR.

"We were only able to see these dopants, along with other semicrystalline impurities, through the use of lead solid-state NMR," said Vela.

Another major discovery scientists made was that solid state synthesis is far superior to solution-phase synthesis in making mixed-halide perovskites. According to Vela, the advanced spectroscopy and materials capabilities of Ames Laboratory and ISU were critical in understanding how various synthetic procedures affect the true composition, speciation, stability and optoelectronic properties of these materials.

"We found you can make clean mixed halide perovskites without semi-crystalline impurities if you make them in the absence of a solvent," Vela said.

According to Vela, the significance of their findings is multifold and they are only beginning to grasp the implications of those findings.

"One obvious implication is that our understanding of the amazing opto-electronic properties of these semiconductors was incomplete," said Vela. "We're dealing with a compound that is not inherently as simple as people thought."

The research is further discussed in a paper, "Persistent Dopants and Phase Segregation in Organolead Mixed-Halide Perovskites," authored by Vela, Bryan A. Rosales, Long Men, Sarah D. Cady, Michael P. Hanrahan, and Aaron J. Rossini; and published online in Chemistry Materials. The work was supported by DOE's Office of Science.

###

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Steve karsjen | EurekAlert!

Further reports about: LED dopants semiconductors solar cell solar cells spectroscopy

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>