Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New perovskite research discoveries may lead to solar cell, LED advances

08.09.2016

"Promising" and "remarkable" are two words U.S. Department of Energy's Ames Laboratory scientist Javier Vela uses to describe recent research results on organolead mixed-halide perovskites.

Perovskites are optically active, semiconducting compounds that are known to display intriguing electronic, light-emitting and chemical properties. Over the last few years, lead-halide perovskites have become one of the most promising semiconductors for solar cells due to their low cost, easier processability and high power conversion efficiencies. Photovoltaics made of these materials now reach power conversion efficiencies of more than 20 percent.


This image is a rendition of a one-dimensional, needle-like nanocrystal, such as the one prepared by Vela in collaboration with scientists Emily Smith and Jacob Petrich. Vela's team has prepared a family of highly luminescent perovskite nanocrystals with shape correlated emission.

Credit: Ames Laboratory

Vela's research has focused on mixed-halide perovskites. Halides are simple and abundant, negatively charged compounds, such as iodide, bromide and chloride. Mixed-halide perovskites are of interest over single-halide perovskites for a variety of reasons. Mixed-halide perovskites appear to benefit from enhanced thermal and moisture stability, which makes them degrade less quickly than single-halide perovskites, Vela said. He added they can be fine-tuned to absorb sunlight at specific wavelengths, which makes them useful for tandem solar cells and many other applications, including light emitting diodes (LEDs).Using these compounds, scientists can control the color and efficiency of such energy conversion devices.

Speculating that these enhancements had something to do with the internal structure of mixed-halide perovskites, Vela, who is also an associate professor of chemistry at Iowa State University (ISU), worked with scientists with expertise in solid-state nuclear magnetic resonance (NMR) at both Ames Laboratory and ISU. NMR is an analytical chemistry technique that provides scientists with physical, chemical, structural and electronic information about complex samples.

"Our basic question was what it is about these materials in terms of their chemistry, composition, and structure that can affect their behavior," said Vela.

Scientists found that depending on how the material is made there can be significant nonstoichiometric impurities or "dopants" permeating the material, which could significantly affect the material's chemistry, moisture stability and transport properties.

The answers came via the combination of the use of optical absorption spectroscopy, powder X-ray diffraction and for the first time, the advanced probing capabilities of lead solid-state NMR.

"We were only able to see these dopants, along with other semicrystalline impurities, through the use of lead solid-state NMR," said Vela.

Another major discovery scientists made was that solid state synthesis is far superior to solution-phase synthesis in making mixed-halide perovskites. According to Vela, the advanced spectroscopy and materials capabilities of Ames Laboratory and ISU were critical in understanding how various synthetic procedures affect the true composition, speciation, stability and optoelectronic properties of these materials.

"We found you can make clean mixed halide perovskites without semi-crystalline impurities if you make them in the absence of a solvent," Vela said.

According to Vela, the significance of their findings is multifold and they are only beginning to grasp the implications of those findings.

"One obvious implication is that our understanding of the amazing opto-electronic properties of these semiconductors was incomplete," said Vela. "We're dealing with a compound that is not inherently as simple as people thought."

The research is further discussed in a paper, "Persistent Dopants and Phase Segregation in Organolead Mixed-Halide Perovskites," authored by Vela, Bryan A. Rosales, Long Men, Sarah D. Cady, Michael P. Hanrahan, and Aaron J. Rossini; and published online in Chemistry Materials. The work was supported by DOE's Office of Science.

###

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Steve karsjen | EurekAlert!

Further reports about: LED dopants semiconductors solar cell solar cells spectroscopy

More articles from Materials Sciences:

nachricht Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth
27.02.2017 | Fraunhofer IFAM

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>