Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ORNL method could unleash solar power potential

16.03.2016

Measurement and data analysis techniques developed at the Department of Energy's Oak Ridge National Laboratory could provide new insight into performance-robbing flaws in crystalline structures, ultimately improving the performance of solar cells.

While solar cells made from light-harvesting perovskite (an organic-inorganic hybrid) materials have recently eclipsed the 20 percent efficiency mark, researchers believe they could do better if they had a clearer picture of energy flow at the nanometer scale.


(Top) A phasor plot of the transient absorption data shows the presence of free charges and excitons; a false colored image shows their contributions at different spatial positions.

Credit: ORNL

The ORNL discovery, described in a paper published in ACS Photonics, synchronizes microscopy, ultra-short pulses of laser light and data analytics to extract images with single-pixel precision, providing unprecedented detail.

"If we can see exactly and in real time what is happening, we can map out the electronic processes in space instead of relying on snapshots gleaned from spatial averages," said Benjamin Doughty, one of the authors and a member of ORNL's Chemical Sciences Division.

Armed with information about what electrons are doing inside the material, researchers believe they can make improvements that lead to solar cells that are more efficient and potentially less expensive.

"With conventional approaches of studying photovoltaic materials, we are unable to accurately map out electronic processes and how electrons are getting lost," Doughty said. "Those processes can translate into losses in efficiency."

The experiment consists of optically pumping the thin film sample with a 50 femtosecond -- or 50 millionths of a billionth of a second -- laser pulse and then measuring changes in light absorption with a second laser pulse in the material. The technique, called femtosecond transient absorption microscopy, consists of a tabletop of lasers, optics and a microscope. The net result is a pixel-by-pixel map of the material being studied and information researchers can use to improve performance.

"The ability to identify what will be created after the solar cell absorbs a photon, either a pair of free charges or their bound form called an exciton, is crucial from both fundamental and applied perspectives," said co-author Yingzhong Ma, who led the research team. "We found that both free charges and excitons are present, and the strength of our approach lies in not only identifying where they are but also determining what their relative contributions are when they are both present at a given spatial location."

A key remaining challenge is to understand what causes the observed spatial difference, said Ma, so he and colleagues are exploring an all-optical imaging approach that would allow them to correlate electronic dynamics with underlying structural information. This approach may also help researchers map and understand perovskite degradation issues associated with moisture. Ma noted that this must be resolved before solar cells based on this class of materials can be successful.

###

Other team members were Mary Jane Simpson, the lead author and a postdoctoral research associate in the Chemical Sciences Division, and Bin Yang and Kai Xiao of ORNL's Center for Nanophase Materials Science. The paper, titled "Separation of Distinct Photoexcitation Species in Femtosecond Transient Absorption Microscopy," is available at http://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00638.

This research was funded by DOE's Office of Science. Perovskite sample preparation was done at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility.

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Image: https://www.ornl.gov/sites/default/files/news/images/Phasor.jpg

Cutline: (Top) A phasor plot of the transient absorption data shows the presence of free charges and excitons; a false colored image shows their contributions at different spatial positions.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter -- http://twitter.com/ornl

RSS Feeds -- http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr -- http://www.flickr.com/photos/oakridgelab

YouTube -- http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn -- http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook -- http://www.facebook.com/Oak.Ridge.National.Laboratory

Ron Walli | EurekAlert!

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>