Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials

26.07.2016

A team of scientists led by the Department of Energy's Oak Ridge National Laboratory has developed a novel way to produce two-dimensional nanosheets by separating bulk materials with nontoxic liquid nitrogen. The environmentally friendly process generates a 20-fold increase in surface area per sheet, which could expand the nanomaterials' commercial applications.

"It's actually a very simple procedure," said ORNL chemist Huiyuan Zhu, who co-authored a study published in Angewandte Chemie International Edition. "We heated commercially available boron nitride in a furnace to 800 degrees Celsius to expand the material's 2D layers. Then, we immediately dipped the material into liquid nitrogen, which penetrates through the interlayers, gasifies into nitrogen, and exfoliates, or separates, the material into ultrathin layers."


ORNL's Huiyuan Zhu places a sample of boron nitride, or "white graphene," into a furnace as part of a novel, nontoxic gas exfoliation process to separate 2-D nanomaterials.

Credit: ORNL

Nanosheets of boron nitride could be used in separation and catalysis, such as transforming carbon monoxide to carbon dioxide in gasoline-powered engines. They also may act as an absorbent to mop up hazardous waste. Zhu said the team's controlled gas exfoliation process could be used to synthesize other 2D nanomaterials such as graphene, which has potential applications in semiconductors, photovoltaics, electrodes and water purification.

Because of the versatility and commercial potential of one-atom-thick 2D nanomaterials, scientists are seeking more efficient ways to produce larger sheets. Current exfoliation procedures use harsh chemicals that produce hazardous byproducts and reduce the amount of surface area per nanosheet, Zhu said.

"In this particular case, the surface area of the boron nitride nanosheets is 278 square meters per gram, and the commercially available boron nitride material has a surface area of only 10 square meters per gram," Zhu said. "With 20 times more surface area, boron nitride can be used as a great support for catalysis."

Further research is planned to expand the surface area of boron nitride nanosheets and also test their feasibility in cleaning up engine exhaust and improving the efficiency of hydrogen fuel cells.

###

Along with Zhu, several co-authors participated in the paper, "Controlled Gas Exfoliation of Boron Nitride into Few-Layered Nanosheets," including ORNL's Sheng Dai, Xiang Gao, Qian Li, Shannon M. Mahurin and Wenshuai Zhu; Yanhong Chao, Hongping Li and Huaming Li with Jiangsu University and Meijun Li from the University of Tennessee. The Angewandte Chemie study can be found here.

The study was supported by the DOE Office of Science. Additional funding was provided by the Liane Russell Distinguished Early Career Fellowship through the Laboratory Directed Research and Development program. Zhu joined ORNL in 2014 as one of the lab's first Russell Fellows, and her primary area of research is on synthetic control of hybrid nanomaterials for catalytic applications.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE's Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Image 1: https://www.ornl.gov/sites/default/files/01%20BN%20Gas%20Exfoliation%20Process.jpg

Cutline 1: ORNL's Huiyuan Zhu places a sample of boron nitride, or "white graphene," into a furnace as part of a novel, nontoxic gas exfoliation process to separate 2D nanomaterials.

Image 2: https://www.ornl.gov/sites/default/files/02%20BN%20Gas%20Exfoliation%20image_from%20A%20Chemie.png

Cutline 2: A new ORNL study published in Angewandte Chemie International Edition describes a new gas exfoliation process that yields a 20 percent increase in surface area per nanosheet of boron nitride. (Image credit: Angewandte Chemie International Edition.)

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/ornl
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Media Contact

Sara Shoemaker
shoemakerms@ornl.gov
865-576-9219

 @ORNL

http://www.ornl.gov 

Sara Shoemaker | EurekAlert!

More articles from Materials Sciences:

nachricht Thanks for the memory: NIST takes a deep look at memristors
22.01.2018 | National Institute of Standards and Technology (NIST)

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>