Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Model Clarifies Photoexcited Thin-Film Lattice Dynamics

19.11.2014

Comprehensive new study in the journal "Structural Dynamics" looking at thin films helps to make sense of physical and chemical properties of a wide range of materials

A research team from Germany developed an analytical model to describe the structural dynamics of photoexcited thin films and verified it by ultrafast X-ray diffraction.


Time-resolved X-ray diffraction on a laser-excited thin film which is transiently split in an expanded and a compressed sub layer due to coherent lattice dynamics.

Daniel Schick

Lattice dynamics, atomic movements in a crystal structure, can influence the physical and chemical properties of a material. The phenomenon can be directly studied using ultrafast X-ray diffraction, in which femtosecond X-ray pulses take snapshots of the atomic positions in a crystal by interacting with the structure at the core electronic level.

However, no comprehensive study has yet been carried out to characterize the photoexcited lattice dynamics of an opaque thin film on a semi-infinite transparent substrate. As a result, ultrafast X-ray diffraction data for such samples can be challenging to interpret.

Now a new study in the journal Structural Dynamics, from AIP Publishing, builds a model to help interpret such data.

To study this common scenario, the researchers excited a thin film of metallic SrRuO3 deposited on a transparent SrTiO3 substrate with femtosecond near infrared laser pulses and subsequently probed the atomic structure with equally short hard X-ray pulses. By comparing the resulting time-resolved diffractograms for different film thicknesses and excitation conditions, they found that the lattice dynamics of the system depended on only four parameters: the thickness of the film, its longitudinal acoustic sound velocity, a scaling factor and a shape factor.

“The coherent lattice dynamics are involved in nearly any ultrafast experiment on laser-excited thin films and their time scale is mainly determined by the film thickness and its longitudinal sound velocity,” said Daniel Schick, a researcher at the University of Potsdam. They then incorporated these factors into an analytical model that can be used to explain the observed variation in the X-ray diffraction of different thin films.

Their model allows them to describe a rather puzzling finding: although a thin film is essentially heated by the laser excitation and should rapidly expand, a significant part of the film is compressed for a short time of only a few picoseconds after the laser pulse hits the sample. In the ultrafast X-ray diffraction this manifests in a transient “splitting” of the thin film’s Bragg peak, which provides direct information on the average atomic distances in the film. This observation can be directly linked to the spatial excitation profile of the thin opaque film, which is, in the simplest case, given by the optical absorption length of the laser light and is included as the shape factor in the analytical model.

After developing their model using this relatively simple model system, the researchers have applied it to study more complex ones, such as with a strong coupling of the lattice to charge or spin degrees of freedom in ferroelectric and magnetic materials.

The article, “Ultrafast lattice response of photoexcited thin films 1 studied by X-ray diffraction,” by Daniel Schick, Marc Herzog, André Bojahr, Wolfram Leitenberger, Andreas Hertwig, Roman Shayduk and Matias Bargheer appears in the journal Structural Dynamics on November 18, 2014 (DOI: 10.1063/1.4901228). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/sdy/1/6/10.1063/1.4901228

The authors on this paper are affiliated with the Institute for Physics and Astronomy in Potsdam, Germany; the Helmholtz-Zentrum Berlin for Materials and Energy in Berlin; the Fritz Haber Institute of the Max Planck Society in Berlin; the BAM Federal Institute for Materials Research and Testing and the Deutsches Elektronen-Synchrotron.

ABOUT THE JOURNAL

Structural Dynamics is a journal devoted to research on the methods, techniques and understand of time-resolved changes in chemical, biological and condensed matter systems. See: http://sd.aip.org/

Contact Information
Jason Socrates Bardi, AIP
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>