Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microwave imaging approach opens a nanoscale view on processes in liquids

16.03.2016

Technique can explore technologically and medically important processes that occur at boundaries between liquids and solids, such as in batteries or along cell membranes

U.S. government nanotechnology researchers have demonstrated a new window to view what are now mostly clandestine operations occurring in soggy, inhospitable realms of the nanoworld--technologically and medically important processes that occur at boundaries between liquids and solids, such as in batteries or along cell membranes.


NIST and ORNL scientists have devised a near-field microwave imaging approach to capture images of nanoscale processes under natural conditions. As the tip of an atomic force microscope scans over an ultrathin membrane it emits near-field microwaves into the sample below. Shown are images of yeast cells and silver dendrites, which formed on an electrode during electroplating.

Credit: Kolmakov/CNST

The new microwave imaging approach trumps X-ray and electron-based methods that can damage delicate samples and muddy results. And it spares expensive equipment from being exposed to liquids, while eliminating the need to harden probes against corrosive, toxic, or other harmful environments.

Writing in the journal ACS Nano, the collaborators--from the Center for Nanoscale Science and Technology at the National Institute of Standards and Technology (NIST) and the Department of Energy's Oak Ridge National Laboratory (ORNL)--describe their new approach to imaging reactive and biological samples at nanoscale levels under realistic conditions.

The key element is a window, an ultrathin membrane that separates the needle-like probe of an atomic force microscope (AFM) from the underlying sample, held in tiny containers that maintain a consistent liquid or gas environment. The addition transforms near-field microwave imaging into a versatile tool, extending its use beyond semiconductor technology, where it is used to study solid structures, to a new realm of liquids and gases.

"The ultrathin, microwave-transparent membrane allows the sample to be examined in much the same way that Earth's radar was used to reveal images of the surface of Venus through its opaque atmosphere," explained NIST physicist Andrei Kolmakov.

"We generate microwaves at the apex--or very end--of the probe tip," Kolmakov said. "The microwaves penetrate through the membrane a few hundred nanometers deep into the liquid up to the object of interest. As the tip scans the sample from across the membrane, we record the reflected microwaves to generate the image."

Microwaves are much larger than the nanoscale objects they are used to "seeing." But when emitted from only a minuscule distance away, near-field microwaves reflected from a sample yield a surprisingly detailed image.

In their proof-of-concept experiments, the NIST-ORNL team used their hybrid microscope to get a nanoscale view of the early stages of a silver electroplating process. Microwave images captured the electrochemical formation of branching metal clusters, or dendrites, on electrodes. Features nearly as small as 100 nanometers (billionths of a meter) could be discerned.

As important, the low-energy microwaves were too feeble to sever chemical bonds, heat, or interfere in other ways with the process they were being used to capture in images. In contrast, a scanning electron microscope that was used to record the same electroplating process at comparable levels of resolution yielded images showing delamination and other destructive effects of the electron beam.

The team reports similar success in using their AFM-microwave set-up to record images of yeast cells dispersed in water or glycerol. Levels of spatial resolution were comparable to those achieved with a scanning electron microscope, but again, were free of the damage caused by the electron beam.

In their experiments, the team used membranes--made either of silicon dioxide or silicon nitride--that ranged in thickness from 8 nanometers to 50 nanometers. They found, however, that the thinner the membrane the better the resolution--down to tens of nanometers--and the greater the probing depth--up to hundreds of nanometers.

"These numbers can be improved further with tuning and development of better electronics," Kolmakov said.

In addition to studying processes in reactive, toxic, or radioactive environments, the researchers suggest that their microwave-imaging approach might be integrated into "lab-on-a-chip" fluidic devices, where it can be used to sample liquids and gases.

###

The research was performed at NIST's Center for Nanoscale Science and Technology and at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.

Article: A. Tselev, J. Velmurugan, A.V. Ievlev, S.V. Kalinin and A. Kolmakov. "Seeing through Walls at the Nanoscale: Microwave Microscopy of Enclosed Objects and Processes in Liquids," ACS Nano, Article ASAP. DOI: 10.1021/acsnano.5b07919

Media Contact

Mark Bello
mark.bello@nist.gov
301-975-3776

 @usnistgov

http://www.nist.gov 

Mark Bello | EurekAlert!

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>