Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microwave imaging approach opens a nanoscale view on processes in liquids

16.03.2016

Technique can explore technologically and medically important processes that occur at boundaries between liquids and solids, such as in batteries or along cell membranes

U.S. government nanotechnology researchers have demonstrated a new window to view what are now mostly clandestine operations occurring in soggy, inhospitable realms of the nanoworld--technologically and medically important processes that occur at boundaries between liquids and solids, such as in batteries or along cell membranes.


NIST and ORNL scientists have devised a near-field microwave imaging approach to capture images of nanoscale processes under natural conditions. As the tip of an atomic force microscope scans over an ultrathin membrane it emits near-field microwaves into the sample below. Shown are images of yeast cells and silver dendrites, which formed on an electrode during electroplating.

Credit: Kolmakov/CNST

The new microwave imaging approach trumps X-ray and electron-based methods that can damage delicate samples and muddy results. And it spares expensive equipment from being exposed to liquids, while eliminating the need to harden probes against corrosive, toxic, or other harmful environments.

Writing in the journal ACS Nano, the collaborators--from the Center for Nanoscale Science and Technology at the National Institute of Standards and Technology (NIST) and the Department of Energy's Oak Ridge National Laboratory (ORNL)--describe their new approach to imaging reactive and biological samples at nanoscale levels under realistic conditions.

The key element is a window, an ultrathin membrane that separates the needle-like probe of an atomic force microscope (AFM) from the underlying sample, held in tiny containers that maintain a consistent liquid or gas environment. The addition transforms near-field microwave imaging into a versatile tool, extending its use beyond semiconductor technology, where it is used to study solid structures, to a new realm of liquids and gases.

"The ultrathin, microwave-transparent membrane allows the sample to be examined in much the same way that Earth's radar was used to reveal images of the surface of Venus through its opaque atmosphere," explained NIST physicist Andrei Kolmakov.

"We generate microwaves at the apex--or very end--of the probe tip," Kolmakov said. "The microwaves penetrate through the membrane a few hundred nanometers deep into the liquid up to the object of interest. As the tip scans the sample from across the membrane, we record the reflected microwaves to generate the image."

Microwaves are much larger than the nanoscale objects they are used to "seeing." But when emitted from only a minuscule distance away, near-field microwaves reflected from a sample yield a surprisingly detailed image.

In their proof-of-concept experiments, the NIST-ORNL team used their hybrid microscope to get a nanoscale view of the early stages of a silver electroplating process. Microwave images captured the electrochemical formation of branching metal clusters, or dendrites, on electrodes. Features nearly as small as 100 nanometers (billionths of a meter) could be discerned.

As important, the low-energy microwaves were too feeble to sever chemical bonds, heat, or interfere in other ways with the process they were being used to capture in images. In contrast, a scanning electron microscope that was used to record the same electroplating process at comparable levels of resolution yielded images showing delamination and other destructive effects of the electron beam.

The team reports similar success in using their AFM-microwave set-up to record images of yeast cells dispersed in water or glycerol. Levels of spatial resolution were comparable to those achieved with a scanning electron microscope, but again, were free of the damage caused by the electron beam.

In their experiments, the team used membranes--made either of silicon dioxide or silicon nitride--that ranged in thickness from 8 nanometers to 50 nanometers. They found, however, that the thinner the membrane the better the resolution--down to tens of nanometers--and the greater the probing depth--up to hundreds of nanometers.

"These numbers can be improved further with tuning and development of better electronics," Kolmakov said.

In addition to studying processes in reactive, toxic, or radioactive environments, the researchers suggest that their microwave-imaging approach might be integrated into "lab-on-a-chip" fluidic devices, where it can be used to sample liquids and gases.

###

The research was performed at NIST's Center for Nanoscale Science and Technology and at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.

Article: A. Tselev, J. Velmurugan, A.V. Ievlev, S.V. Kalinin and A. Kolmakov. "Seeing through Walls at the Nanoscale: Microwave Microscopy of Enclosed Objects and Processes in Liquids," ACS Nano, Article ASAP. DOI: 10.1021/acsnano.5b07919

Media Contact

Mark Bello
mark.bello@nist.gov
301-975-3776

 @usnistgov

http://www.nist.gov 

Mark Bello | EurekAlert!

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>