Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method developed for timely detection of impending material failure


International acclaim: doctoral candidate at the University of Siegen develops new method for detecting impact damage more quickly and more accurately.

It's hailing and a small crack develops in the windscreen; it first goes unnoticed and eventually turns into a problem. This type of scenario, which usually spells annoyance and expense in the case of a car, can become dangerous when it comes to aerospace: it happens when material damage occurs as a result of brief high loads, such as those produced by a collision with a bird.

Prof. Claus-Peter Fritzen (l.) und Doktorand Daniel Ginsberg neben einem Flugzeubauteil mit Sensoren.

Universität Siegen/Björn Bowinkelmann

The high performance fibre composite materials that are used are very sensitive to these kinds of impact loads. At the University of Siegen, Daniel Ginsberg has developed a new kind of monitoring system that registers an impact load more quickly and more accurately than other methods. Ginsberg uses fewer sensors than in previous methods, which makes load monitoring significantly less expensive and more attractive in terms of possible applications.

The doctoral candidate from the University of Siegen has already won international recognition for his paper entitled "Sparse Solution Strategy for Simultaneous Localization and Magnitude Estimation of Impact Loads". At this year's International Conference on Smart Materials and Structures in Vancouver, Canada, Ginsberg received the best student paper award.

The article that was submitted gives an account of the significant interim findings of Ginsberg's doctoral thesis, which he is writing as a member of the working group directed by Siegen Professor Claus-Peter Fritzen, who co-authored the paper.

Load monitoring systems measure vibrations of the material. The vibrations can be used to reconstruct the location and intensity of an impact. This makes it possible to predict and prevent damaging after-effects, which could even include material failure.

Ginsberg's monitoring system uses a new calculation method and has applied algorithms from mathematics to the problem of force reconstruction. His method is superior to previous ones in a number of respects.

"With other methods, the location of the impact has to be known for the force reconstruction," says Ginsberg. His calculations, by contrast, reveal the location of the impact, are more accurate and more reliable, and they require fewer sensors to achieve such results.

Björn Bowinkelmann | idw - Informationsdienst Wissenschaft
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>