Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method developed for timely detection of impending material failure

28.08.2015

International acclaim: doctoral candidate at the University of Siegen develops new method for detecting impact damage more quickly and more accurately.

It's hailing and a small crack develops in the windscreen; it first goes unnoticed and eventually turns into a problem. This type of scenario, which usually spells annoyance and expense in the case of a car, can become dangerous when it comes to aerospace: it happens when material damage occurs as a result of brief high loads, such as those produced by a collision with a bird.


Prof. Claus-Peter Fritzen (l.) und Doktorand Daniel Ginsberg neben einem Flugzeubauteil mit Sensoren.

Universität Siegen/Björn Bowinkelmann

The high performance fibre composite materials that are used are very sensitive to these kinds of impact loads. At the University of Siegen, Daniel Ginsberg has developed a new kind of monitoring system that registers an impact load more quickly and more accurately than other methods. Ginsberg uses fewer sensors than in previous methods, which makes load monitoring significantly less expensive and more attractive in terms of possible applications.

The doctoral candidate from the University of Siegen has already won international recognition for his paper entitled "Sparse Solution Strategy for Simultaneous Localization and Magnitude Estimation of Impact Loads". At this year's International Conference on Smart Materials and Structures in Vancouver, Canada, Ginsberg received the best student paper award.

The article that was submitted gives an account of the significant interim findings of Ginsberg's doctoral thesis, which he is writing as a member of the working group directed by Siegen Professor Claus-Peter Fritzen, who co-authored the paper.

Load monitoring systems measure vibrations of the material. The vibrations can be used to reconstruct the location and intensity of an impact. This makes it possible to predict and prevent damaging after-effects, which could even include material failure.

Ginsberg's monitoring system uses a new calculation method and has applied algorithms from mathematics to the problem of force reconstruction. His method is superior to previous ones in a number of respects.

"With other methods, the location of the impact has to be known for the force reconstruction," says Ginsberg. His calculations, by contrast, reveal the location of the impact, are more accurate and more reliable, and they require fewer sensors to achieve such results.

Björn Bowinkelmann | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-siegen.de

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>