Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material could lead to erasable and rewriteable optical chips

07.12.2016

A military drone flying on a reconnaissance mission is captured behind enemy lines, setting into motion a team of engineers who need to remotely delete sensitive information carried on the drone's chips. Because the chips are optical and not electronic, the engineers can now simply flash a beam of UV light onto the chip to instantly erase all content. Disaster averted.

This James Bond-esque chip is closer to reality because of a new development in a nanomaterial developed by Yuebing Zheng, a professor of mechanical engineering and materials science and engineering in the Cockrell School of Engineering. His team described its findings in the journal Nano Letters on Nov. 10.


This image is a video still that shows the researchers rewriting a waveguide, a component that guides light, using a laser on nanomaterial. (The waveguide is the horizontal line on the box.)

Credit: Cockrell School of Engineering

"The molecules in this material are very sensitive to light, so we can use a UV light or specific light wavelengths to erase or create optical components," Zheng said. "Potentially, we could incorporate this LED into the chip and erase its contents wirelessly. We could even time it to disappear after a certain period of time."

To test their innovation, the researchers used a green laser to develop a waveguide -- a structure or tunnel that guides light waves from one point to another -- on their nanomaterial. They then erased the waveguide with a UV light, and re-wrote it on the same material using the green laser. The researchers believe they are the first to rewrite a waveguide, which is a crucial photonic component and a building block for integrated circuits, using an all-optical technique.

Their main advancement is a specially designed hybrid nanomaterial that is akin to a child's Etch-A-Sketch toy -- only the material relies on light and tiny molecules to draw, delete and re-write optical components. Engineers and scientists are interested in rewritable components that use light rather than electricity to carry data because they hold potential for making devices faster, smaller and more energy-efficient than components made from silicon.

The concept of rewritable optics, which underpins optical storage devices such as CDs and DVDs, has been pursued intensely. The drawback to CDs, DVDs and other state-of-the-art rewritable optical components is that they require bulky, stand-alone light sources, optical media and light detectors.

In contrast, the UT Austin innovation allows for writing, erasing and rewriting to all happen on the two-dimensional (2-D) nanomaterial, which paves the way for nano-scale optical chips and circuits.

"To develop rewritable integrated nanophotonic circuits, one has to be able to confine light within a 2-D plane, where the light can travel in the plane over a long distance and be arbitrarily controlled in terms of its propagation direction, amplitude, frequency and phase," Zheng said. "Our material, which is a hybrid, makes it possible to develop rewritable integrated nanophotonic circuits."

The researchers' material starts with a plasmonic surface, which is made up of aluminum nanoparticles, on top of which sits a 280-nanometer polymer layer embedded with molecules that can respond to light. Due to quantum mechanics interactions with the light, the molecules can either become transparent, allowing the light waves to propagate, or they can absorb the light.

Another advantage of the material is that it can operate two light-transporting modes simultaneously -- called the hybrid mode. The material's dielectric waveguide mode can guide light propagation over a long distance, while the plasmonic mode is able to dramatically amplify the light signals within a smaller space.

"The hybrid mode takes the advantages of both dielectric waveguide mode and plasmonic resonance mode, and combines them together while circumventing the limits of each," Zheng said. "We realized an all-optical control through a technique, called photoswitchable Rabi splitting, which, for the first time, can be achieved in the hybrid plasmon-waveguide mode."

The integration between these two modes significantly improves the performances of the optical cavity in this hybrid nanomaterial, which features high quality factor and low optical loss and thus maximizes the coupling between the molecules and the hybrid mode.

There are challenges that must be addressed before an optical chip or nanophotonic circuit can be designed using this material, Zheng said, including optimizing the molecules to improve the stability of the re-writable waveguides and their performance for optical communications.

###

This research received funding from Beckman Young Investigator Program.

Media Contact

Sandra Zaragoza
Zaragoza@utexas.edu
512-471-2129

 @UTAustin

http://www.utexas.edu 

Sandra Zaragoza | EurekAlert!

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>