Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material coating technology mimics Nature's Lotus Effect

02.05.2014

Ever stop to consider why lotus plant leaves always look clean? The hydrophobic -- water repelling -- characteristic of the leaf, termed the "Lotus effect," helps the plant survive in muddy swamps, repelling dirt and producing beautiful flowers.

Of late, engineers have been paying more and more attention to nature's efficiencies, such as the Lotus effect, and studying its behavior in order to make advances in technology. As one example, learning more about swarming schools of fish is aiding in the development of unmanned underwater vehicles. Other researchers are observing the extraordinary navigational abilities of bats that might lead to new ways to reconfigure aviation highways in the skies.


Ranga Pitchumani

Photo courtesy of the Department of Energy.

Ranga Pitchumani, professor of mechanical engineering at Virginia Tech and currently on an invitational assignment as the chief scientist and director of the Concentrating Solar Power and Systems Integration programs of the U.S. Department of Energy's SunShot Initiative, would like to see more efficiencies and clever designs in technology. His work reflects this philosophy.

His recent development of a type of coating for materials that has little to no affinity for water emulates the Lotus effect. Commonplace material coatings are as simple as paints and varnishes. More sophisticated coatings might be used for resistance to corrosion, fire, or explosives.

The American Chemical Society recognized the impact of the work of Pitchumani and Atieh Haghdoost of Tehran, Iran, a recent doctoral graduate from Pitchumani's Advanced Materials and Technologies Laboratory, featuring their research on the cover of its April 15 issue of the publication Langmuir, a highly-cited, peer reviewed journal. The article includes a video demonstration of the coating.

Using a two-step technique, "We produced a low-cost and simple approach for coating metallic surfaces with an enduring superhydrophobic (strong water repellant) film of copper," Pitchumani explained. Copper allows for high heat and electrical conductivity, and is the material of choice in many engineering applications such as heat exchangers and electronic circuit boards.

Numerous methods currently exist to produce coating surfaces that for all practical purposes do not get wet as the water droplets run off the material. A few examples are: spraying; self-assembly where molecules spontaneously organize themselves into a structure; and laser etching.

But Pitchumani and Haghdoost explained their method "differs in that their two-step process is used to directly make superhydrophobic copper coatings without the more costly need for an additional layer of a low surface energy material."

The two-step process uses a common coating technique called electrodeposition. Again, they have a distinction -- the difference from previous manufacturing practices is that Pitchumani and Haghdoost do not use a template that can adversely affect the texture of the coating that is deposited on the surface of the material or substrate. Their template-free process allows the coating material to be made of the same material as the substrate, thereby preserving its thermal and electrical properties.

The possibilities for the technology are huge. The coatings can minimize or eliminate "fouling" -- dirt and grime accumulation -- in heat exchangers, reduce pressure drop in flow through tubes, provide improved corrosion resistance, and mitigate creep failure in electronic printed circuit board applications. They currently have an international patent pending (PCT/US2014/016312), that was filed through the Virginia Tech Intellectual Property office.

In the future, they hope to expand the nature-inspired innovation to materials other than copper.

The College of Engineering at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Lynn A Nystrom

Director, News & External Relations

540-231-4371

tansy@vt.edu

Lynn A Nystrom | VT News
Further information:
http://www.vtnews.vt.edu/articles/2014/05/050114-engineering-newcoatingtechnology.html

Further reports about: circuit coating copper creep heat materials pressure produce publication resistance surfaces technique

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>