Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material coating technology mimics Nature's Lotus Effect

02.05.2014

Ever stop to consider why lotus plant leaves always look clean? The hydrophobic -- water repelling -- characteristic of the leaf, termed the "Lotus effect," helps the plant survive in muddy swamps, repelling dirt and producing beautiful flowers.

Of late, engineers have been paying more and more attention to nature's efficiencies, such as the Lotus effect, and studying its behavior in order to make advances in technology. As one example, learning more about swarming schools of fish is aiding in the development of unmanned underwater vehicles. Other researchers are observing the extraordinary navigational abilities of bats that might lead to new ways to reconfigure aviation highways in the skies.


Ranga Pitchumani

Photo courtesy of the Department of Energy.

Ranga Pitchumani, professor of mechanical engineering at Virginia Tech and currently on an invitational assignment as the chief scientist and director of the Concentrating Solar Power and Systems Integration programs of the U.S. Department of Energy's SunShot Initiative, would like to see more efficiencies and clever designs in technology. His work reflects this philosophy.

His recent development of a type of coating for materials that has little to no affinity for water emulates the Lotus effect. Commonplace material coatings are as simple as paints and varnishes. More sophisticated coatings might be used for resistance to corrosion, fire, or explosives.

The American Chemical Society recognized the impact of the work of Pitchumani and Atieh Haghdoost of Tehran, Iran, a recent doctoral graduate from Pitchumani's Advanced Materials and Technologies Laboratory, featuring their research on the cover of its April 15 issue of the publication Langmuir, a highly-cited, peer reviewed journal. The article includes a video demonstration of the coating.

Using a two-step technique, "We produced a low-cost and simple approach for coating metallic surfaces with an enduring superhydrophobic (strong water repellant) film of copper," Pitchumani explained. Copper allows for high heat and electrical conductivity, and is the material of choice in many engineering applications such as heat exchangers and electronic circuit boards.

Numerous methods currently exist to produce coating surfaces that for all practical purposes do not get wet as the water droplets run off the material. A few examples are: spraying; self-assembly where molecules spontaneously organize themselves into a structure; and laser etching.

But Pitchumani and Haghdoost explained their method "differs in that their two-step process is used to directly make superhydrophobic copper coatings without the more costly need for an additional layer of a low surface energy material."

The two-step process uses a common coating technique called electrodeposition. Again, they have a distinction -- the difference from previous manufacturing practices is that Pitchumani and Haghdoost do not use a template that can adversely affect the texture of the coating that is deposited on the surface of the material or substrate. Their template-free process allows the coating material to be made of the same material as the substrate, thereby preserving its thermal and electrical properties.

The possibilities for the technology are huge. The coatings can minimize or eliminate "fouling" -- dirt and grime accumulation -- in heat exchangers, reduce pressure drop in flow through tubes, provide improved corrosion resistance, and mitigate creep failure in electronic printed circuit board applications. They currently have an international patent pending (PCT/US2014/016312), that was filed through the Virginia Tech Intellectual Property office.

In the future, they hope to expand the nature-inspired innovation to materials other than copper.

The College of Engineering at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Lynn A Nystrom

Director, News & External Relations

540-231-4371

tansy@vt.edu

Lynn A Nystrom | VT News
Further information:
http://www.vtnews.vt.edu/articles/2014/05/050114-engineering-newcoatingtechnology.html

Further reports about: circuit coating copper creep heat materials pressure produce publication resistance surfaces technique

More articles from Materials Sciences:

nachricht Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current
27.07.2015 | Argonne National Laboratory

nachricht Quantum dots light the way
21.07.2015 | The Agency for Science, Technology and Research (A*STAR)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current

27.07.2015 | Materials Sciences

Superfast fluorescence sets new speed record

27.07.2015 | Information Technology

Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes

27.07.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>