Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Artificial Cells Mimic Nature’s Tiny Reactors


A new approach creates microscale bioreactors for studying complex reactions for energy production and storage.

Artificial cells that mimic their natural counterparts help scientists learn the secrets of complex processes, such as how plant cells turn sunlight, water, and carbon dioxide into fuel. Today’s artificial cells often become unstable when materials transit the membrane.

Image courtesy of Christine Keating

On the left: Fluorescent microscope image shows artificial bioreactors composed of sugar-based dextran polymer solution (blue) encapsulated within a shell of lipid vesicles (red). On the right: schematic illustration of what the vesicles look like at the aqueous/aqueous interface. Blue and yellow shading indicate the interior and exterior solutions.

Scientists have developed a new artificial cell where lipid vesicles (small pools of fatty molecules) self-assemble around treated water droplets. The result is an artificial cell or microscopic bioreactor.

The Impact

This new type of cell-like bioreactor could offer substantial advantages for carrying out complex synthesis processes that mimic natural processes. It could also offer benefits in conducting massively parallel chemical reactions.


Scientists discovered a new process for spontaneously forming “artificial cells” that can function as bioreactors through the self-assembly of polymer-rich water droplets within lipid-rich water droplets.

In essence, the artificial bioreactor is composed of a shell membrane through which reactants and products can selectively pass through, and an interior environment where the reactions occur. Lipid-, polymer-, and gel-based processes for preparing bioreactors modelled after biological cells have been previously developed; maintaining stable reaction-relevant internal environments while simultaneously allowing reactants and products to easily pass through have remained a key challenge.

Now, researchers at the Pennsylvania State University have developed a new type of water-in-water composite emulsion, based on self-assembly of microscale aqueous droplets surrounded by nanoscale lipid capsules in a continuous aqueous phase. These lipid-stabilized water-in-water assemblies provide an exciting alternative to traditional giant lipid vesicles, or liposomes, as artificial cell mimics. In comparison to traditional giant liposomes, which encapsulate a similar aqueous volume within a single continuous lipid membrane, the structures introduced here offer

(1) facile encapsulation of proteins in the interior phase as well as polymer agents for controlling the progress of the desired reaction

(2) excellent uniformity in droplet size and contents

(3) much greater access into and out of the interior volume.

The researchers found that negatively charged lipid capsules, each on the order of 100 nanometers in diameter, self-assemble at the aqueous interface of polymer-rich droplets that are tens of microns in diameter. The repulsion between the lipid capsules due their negative charges forced them to maintain their assembled structure, essentially gluing them together and stabilizing the overall bioreactor composite. A particularly exciting capability of these composite assemblies is the preferential partitioning of DNA within the interior compartment based on the length of the DNA, which bodes well for designing and preparing micro-reactors in which combinations of reactants can be selectively introduced and maintained at desired levels. In addition, ribozyme-induced cleavage of RNA encapsulated within the interior is as another example of the bioreactor’s unique capability.


U.S. Department of Energy, Office of Science, Basic Energy Sciences (development and characterization of liposome-stabilized emulsions) and the NASA Exobiology program (RNA compartmentalization and cleavage reactions).


D.C. Dewey, C.A. Strulson, D.N. Cacace, P.C. Bevilacqua, and C.D. Keating, “Bioreactor droplets from liposome-stabilized all-aqueous emulsions.” Nature Communications 5, 4670 (2014). [DOI: 10.1038/ncomms5670]

Contact Information
Kristin Manke

Kristin Manke | newswise
Further information:

Further reports about: RNA artificial bioreactor droplets liposomes vesicles water droplets

More articles from Materials Sciences:

nachricht Custom sequences for polymers using visible light
22.03.2018 | Tokyo Metropolitan University

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>