Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons reveal unexpected magnetism in rare-earth alloy

14.06.2016

A new study by a multi-institutional team, led by researchers from Brookhaven National Laboratory and Stony Brook University, has revealed exotic magnetic properties in a rare-earth based intermetallic compound. Similar studies suggest a better understanding of those types of behaviors could lead to applications in quantum computing and improved storage device technologies.

Researchers at the Department of Energy's Oak Ridge National Laboratory and their collaborators used neutron scattering to uncover magnetic excitations in the metallic compound ytterbium-platinum-lead (Yb2Pt2Pb). Surprisingly, this three-dimensional material exhibits magnetic properties that one would conventionally expect if the connectivity between magnetic ions was only one-dimensional. Their research is discussed in a paper published in the journal Science.


This illustration shows the one-dimensional Yb ion chain in the quantum magnet Yb2Pt2Pb. The Yb orbitals are depicted as the iso-surfaces, and the green arrows indicate the antiferromagnetically aligned Yb magnetic moments. The particular overlap of the orbitals allows the Yb moments to hop between the nearest and next nearest neighbors along the chain direction, resulting in the two and four spinon excitations.

Credit: ORNL/Genevieve Martin

An electron can theoretically be understood as a bound state of three quasiparticles, which collectively carry its identity: spin, charge and orbit. It has been known that the spinon, the entity that carries information about electron spin, can "separate" itself from the others under certain conditions in one-dimensional chains of magnetic ions such as copper (Cu2+) in an insulating host. Now, the new study reveals that spinons are also present in metallic Yb2Pt2Pb.

The experimental team included ORNL postdoctoral researcher and lead author Liusuo Wu, Georg Ehlers, and Andrey Podlesnyak, instrument scientists at ORNL's Spallation Neutron Source (SNS), a DOE Office of Science User Facility. The team made use of the neutrons' sensitivity to magnetic fluctuations at the atomic scale and the world-leading capabilities of the SNS Cold Neutron Chopper Spectrometer (CNCS) instrument.

Placing a sample of Yb2Pt2Pb in the neutron beam and carefully mapping the dependence of the scattering intensity on angle and time-of-flight revealed characteristic signatures of the magnetic collective excitations in the material.

"An electron's ability to exhibit quantum magnetic behavior like this depends on how many pairings it can make with its nearest neighbors," Wu said. "In a one-dimensional chain, each has only two neighbors, making quantum fluctuations much more dramatic."

With contributions from collaborators at Brookhaven, Stony Brook University, and the University of Amsterdam, the research team developed a picture of spinons propagating in a particular direction, and how a magnetic excitation spectrum was calculated, based on that model, and compared it to the experimental data.

"The element ytterbium, found in the 4f group of the periodic table, often makes an interesting ingredient in a material. Here, the leading magnetic interactions conspire with the crystal structure and the local anisotropy to create an effect we call geometric frustration," Ehlers said. "In materials research, this gives us a handle on the properties of a particular system and allows one, ultimately, to design materials with specific desirable properties."

As in electrons, the magnetic moments in neutrons originate from their spin-1/2, the smallest possible magnetic moment in an ion or electron shell. Combined with their high penetrating power--due to the fact they carry no charge--neutrons are an ideal probe to explore magnetism in atomic systems. Here, the interesting phenomena occur at low energies and low temperatures, which is why the cold neutrons at CNCS are well suited to study them.

"At higher temperatures, the thermal effects will blur what we're able to see, because the ions start moving about more if the material is warmer, hindering our ability to see the excitations clearly," Ehlers said.

Another advantage to the CNCS instrument is that it can detect neutron scattering patterns in all three spatial dimensions simultaneously, which, according to Ehlers, proved to be crucial in the team's investigation.

"At first we were really puzzled by our results," Wu said. "But once we started to understand and look at it from the right perspective, we could see how the electrons hop between overlapping orbitals on nearest Yb neighbors.

"Now that we have a better understanding of how this happens, we can search for other materials that demonstrate similar properties, which will hopefully lead to even bigger discoveries and better technologies."

###

Co-authors of the paper, titled "Orbital-Exchange and Fractional Quantum Number Excitations in an f-electron Metal, Yb2Pt2Pb" include lead author Liusuo Wu, William Gannon, Michael Brockmann, Jean-Sebastien Caux, Moosung Kim, Yiming Qiu, John R. Copley, Georg Ehlers, Andrey Podlesnyak, Alexei Tsvelik, Igor Zaliznyak, and Meigan Aronson.

Additional contributions and complementary measurements were obtained from DOE's Brookhaven National Laboratory, the National Institute of Standards and Technology, Stony Brook University, and the University of Amsterdam.

The research conducted at ORNL's Spallation Neutron Source was supported by DOE's Office of Science. The paper is available at http://science.sciencemag.org/content/352/6290/1206.

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Media Contact

Jeremy Rumsey
rumseyjp@ornl.gov
865-576-2038

 @ORNL

http://www.ornl.gov 

Jeremy Rumsey | EurekAlert!

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>