Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowires highly 'anelastic,' research shows

14.07.2015

Researchers from Brown University and North Carolina State University have found that nanowires made of zinc oxide are highly anelastic, meaning they return to shape slowly after being bent, rather that snapping right back. The findings, published in the journal Nature Nantechnology, add one more to the growing list of interesting properties found in nanoscale wires, tiny strands thousands of times thinner than a human hair.

"What's surprising here is the magnitude of the effect," said Huajian Gao, the Walter H. Annenberg Professor of Engineering and a coauthor of a new paper describing the research. "Anelasticity is present but negligible in many macroscale materials, but becomes prominent at the nanoscale. We show an anelastic effect in nanowires that is four orders of magnitude larger than what is observed in even the most anelastic bulk materials."


Zinc oxide nanowires return to shape slowly after being bent, new research from Brown and NC State shows. That property, called anelasticity, suggests that nanowires might be good in applications that require absorption of shocks or vibrations.

Credit: Zhu lab / NC State

The findings are significant in part because anelastic materials are good absorbers of kinetic energy. These results suggest that nanowires could be useful in damping shocks and vibrations in a wide variety of applications.

"During the last decade, zinc oxide nanowire has been recognized as one of the most important nanomaterials with a broad range of applications such as mechanical energy harvesting, solar cells, sensors and actuators," Gao said. "Our discovery of giant anelasticity and high energy dissipation in zinc oxide nanowires adds a new dimension to their functionality."

The experiments for the study were done in the lab of Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State. Zhu and his colleagues used a delicate apparatus to bend nanowires under a scanning electron microscope.

The work showed that, after the bending strain was released, the wires returned to about 80 percent of their original shape quickly. But they recovered the rest of their original shape much more slowly, over the course of up to 20 or 30 minutes. That is a far more prominent anelastic effect than is common at the macroscale.

To understand why the effect is so prominent, Zhu and his team worked with Gao's lab at Brown, which specializes in theoretical modeling of nanoscale systems. The model that Gao and his colleagues developed suggests that the anelasticity is a result of impurities in the wires' crystal lattice.

Lattice impurities come in two forms. There are vacancies, where atoms are missing from the lattice; and there are interstitials, where the lattice has extra atoms. When a wire is bent to form an arch, there's higher compressive strain on the underside of the arch compared to the upper side. The compression pushes interstitial atoms toward the outside edge, and draws the vacancies toward the inside. When the strain is released, those impurities migrate back to where they started.

That migration takes a bit of time, which is why the wire returns to shape slowly. Because nanowires are so small, the impurities need only travel a short distance to generate a perceptible anelastic effect, which is why the effect is so much more pronounced at the nanoscale compared to the macroscale.

To further test whether the anelasticity was rooted in impurities, the team tested wires made from a different material--silicon doped with boron impurities. Like the zinc oxide nanowires, the doped silicon also proved to be anelastic.

The findings suggest that anelasticity is likely a common property of single-crystal nanowires. "One reviewer [of our paper] commented that this is a new important page in the book on mechanics of nanostructures," Zhu said. "The factors that favor anelasticity, such as high strain gradient, short diffusion distance and large diffusivity of point defects, are all prominently present in nanowires".

###

Other authors on the paper were Guangming Cheng, Qingquan Qin, Jing Li, Feng Xu and Elizabeth C. Dickey from NC State, and Chunyang Miao and Hamed Haftbaradaran from Brown.

The research was supported by the National Science Foundation.

Kevin Stacey | EurekAlert!

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>