Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanospace-Controlled Gold Material Created Using Molecular Technology

22.05.2015

Method Developed to Freely Adjust Pore Size in Nanoporous Gold Material

A research group led by Yusuke Yamauchi at National Institute for Materials Science (NIMS) in cooperation with other research organizations in Japan and overseas, successfully developed a nanoporous gold material with a regular, uniform pore arrangement using polymers as a template.


Figure: Electron micrographs of nanoporous gold materials that were fabricated using different sizes of micelles. Pore size increases from left to right.

Copyright : NIMS

A research group led by Yusuke Yamauchi, an Independent Scientist at the International Center for Materials Nanoarchitectonics (MANA), NIMS (Sukekatsu Ushioda, President), in cooperation with other research organizations in Japan and overseas, successfully developed a nanoporous gold material with a regular, uniform pore arrangement using polymers as a template.

This research result had been published in the Nature Communications on 23 March 2015 (Cuiling Li, Ömer Dag, Thang Duy Dao, Tadaaki Nagao, Yasuhiro Sakamoto, Tatsuo Kimura, Osamu Terasaki and Yusuke Yamauchi, Article title: “Electrochemical synthesis of mesoporous Au films toward mesospace-stimulated optical properties”, doi:10.1038/ncomms7608).

Nanoporous materials, having internal pores of several-nanometers in diameter and a large surface-to-volume ratio, have the potential of producing novel chemical reactions, and thus have been vigorously studied in the pursuit of developing new catalyst and absorbent materials.

In particular, it has been proposed to apply nanoporous gold materials to various fields such as electronics, catalysts and medicine, and it has been reported that they were processed into various forms such as gold nanoparticles, gold nanorods and gold nanowires. However, these conventional nanoporous gold materials have rather irregular pore arrangements, and it had been hoped to fabricate nanoporous gold materials whose pore size can be freely manipulated.

In recent years, it has become feasible to synthesize mesoporous metals with a metal framework by using amphipathic molecules (e.g., surfactants) as a template. In this study, we created uniformly sized spherical micelles (molecular assembly) by adjusting the concentration of polymers that possess both hydrophobic and hydrophilic properties (amphipathic block copolymers) in a dilute solution.

Using these polymers as a template, we reduced gold ions while precisely controlling electrolytic deposition, resulting in the successful formation of nanopores, whose sizes corresponded to the sizes of the micelles used, over the surfaces of the gold films.

In the pores of the nanoporous gold materials, we observed a strong electric field and surface enhanced Raman scattering (SERS). It is expected that these distinctive properties will have various applications such as a SERS-activate substrate for molecular sensing and electrode catalyst.

Also, this technology is applicable to various metals and alloys in addition to gold. Furthermore, since pore size can be adjusted to various diameters by changing the molecular size of the block copolymers, it is feasible to design metal nanospace materials that meet specific needs of users in terms of composition and structure.

This research was conducted as a part of the bioelectronics and biophotonics project sponsored by the JST’s program “Infrastructure Development for Promoting International Science and Technology Cooperation.” It had been published in the British scientific journal Nature Communications (DOI: 10.1038/ncomms7608) at 19:00 on March 23, 2015, Japan time (10:00 on the 23rd British time).


Associated links
NIMS article

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>