Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanospace-Controlled Gold Material Created Using Molecular Technology

22.05.2015

Method Developed to Freely Adjust Pore Size in Nanoporous Gold Material

A research group led by Yusuke Yamauchi at National Institute for Materials Science (NIMS) in cooperation with other research organizations in Japan and overseas, successfully developed a nanoporous gold material with a regular, uniform pore arrangement using polymers as a template.


Figure: Electron micrographs of nanoporous gold materials that were fabricated using different sizes of micelles. Pore size increases from left to right.

Copyright : NIMS

A research group led by Yusuke Yamauchi, an Independent Scientist at the International Center for Materials Nanoarchitectonics (MANA), NIMS (Sukekatsu Ushioda, President), in cooperation with other research organizations in Japan and overseas, successfully developed a nanoporous gold material with a regular, uniform pore arrangement using polymers as a template.

This research result had been published in the Nature Communications on 23 March 2015 (Cuiling Li, Ömer Dag, Thang Duy Dao, Tadaaki Nagao, Yasuhiro Sakamoto, Tatsuo Kimura, Osamu Terasaki and Yusuke Yamauchi, Article title: “Electrochemical synthesis of mesoporous Au films toward mesospace-stimulated optical properties”, doi:10.1038/ncomms7608).

Nanoporous materials, having internal pores of several-nanometers in diameter and a large surface-to-volume ratio, have the potential of producing novel chemical reactions, and thus have been vigorously studied in the pursuit of developing new catalyst and absorbent materials.

In particular, it has been proposed to apply nanoporous gold materials to various fields such as electronics, catalysts and medicine, and it has been reported that they were processed into various forms such as gold nanoparticles, gold nanorods and gold nanowires. However, these conventional nanoporous gold materials have rather irregular pore arrangements, and it had been hoped to fabricate nanoporous gold materials whose pore size can be freely manipulated.

In recent years, it has become feasible to synthesize mesoporous metals with a metal framework by using amphipathic molecules (e.g., surfactants) as a template. In this study, we created uniformly sized spherical micelles (molecular assembly) by adjusting the concentration of polymers that possess both hydrophobic and hydrophilic properties (amphipathic block copolymers) in a dilute solution.

Using these polymers as a template, we reduced gold ions while precisely controlling electrolytic deposition, resulting in the successful formation of nanopores, whose sizes corresponded to the sizes of the micelles used, over the surfaces of the gold films.

In the pores of the nanoporous gold materials, we observed a strong electric field and surface enhanced Raman scattering (SERS). It is expected that these distinctive properties will have various applications such as a SERS-activate substrate for molecular sensing and electrode catalyst.

Also, this technology is applicable to various metals and alloys in addition to gold. Furthermore, since pore size can be adjusted to various diameters by changing the molecular size of the block copolymers, it is feasible to design metal nanospace materials that meet specific needs of users in terms of composition and structure.

This research was conducted as a part of the bioelectronics and biophotonics project sponsored by the JST’s program “Infrastructure Development for Promoting International Science and Technology Cooperation.” It had been published in the British scientific journal Nature Communications (DOI: 10.1038/ncomms7608) at 19:00 on March 23, 2015, Japan time (10:00 on the 23rd British time).


Associated links
NIMS article

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

A Nano-Roundabout for Light

09.12.2016 | Physics and Astronomy

Further Improvement of Qubit Lifetime for Quantum Computers

09.12.2016 | Physics and Astronomy

New weapon against Diabetes

09.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>