Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-infused filters prove effective

27.04.2010
Rice scientists build better catalyst with nanotube membranes

Rice University researchers and their colleagues in Finland and Hungary have found a way to make carbon nanotube membranes that could find wide application as extra-fine air filters and as scaffolds for catalysts that speed chemical reactions.

The results reported in the journal ACS Nano show how such filters can remove up to 99 percent of particulates with diameters of less than a micrometer – or a millionth of a meter. (A human hair is about 100 micrometers wide.)

Using chemical vapor deposition (CVD), a team led by Rice's Robert Vajtai, a faculty fellow in mechanical engineering and materials science, created devices that, at the start of the process, look like tiny showerheads. After 30 minutes in the CVD furnace, the laser-created holes in these silicon dioxide templates fill up with a forest of carbon nanotubes through which only particles on the nanometer scale can pass.

When the tubes are functionalized with catalytic chemicals, particles enter one side of the filter in one form and come out as another. The process is similar to that used by catalytic converters in cars, which convert carbon monoxide into a less-toxic mix of carbon dioxide, nitrogen and water.

"Even when the holes are larger than the particle itself, it can be a very effective filter," Vajtai said. "The basic idea is you have this carbon nanotube forest. The gas flows through, and because of the very small distance between the tubes, gas atoms have to hit many of them before they get out the other side.

"This very strong interaction, compared to macroscopic materials and even some microscopic materials, provides a very good way to make a catalyst template or a filter that is much more effective than a HEPA (high-efficiency particulate-absorbing) filter you can buy at the store," he said.

The filters' permeability depends strongly on how long the nanotubes are allowed to grow, which determines their length and density. The team tested the filters' ability to act as catalysts by depositing palladium onto the nanotubes and using them to turn propene into propane, a benchmark test for catalysis. They found the activated membranes "showed excellent and durable activity," according to the paper.

Co-authors of the paper include Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry; primary author Niina Halonen, Aatto Rautio, Anne-Riikka Leino, Teemu Kyllönen, Jyrki Lappalainen, Krisztiçn Kordás, Géza Tóth, Mike Huuhtanen and Riitta Keiski of the University of Oulu, Finland; and András Sápi, Mária Szabó, Ákos Kukovecz, Zoltán Kónya and Imre Kiricsi of the University of Szeged, Hungary. Funding came from Rice University, Tekes, the Finnish Funding Agency for Technology and Innovation, and the Academy of Finland.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>