Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017

When you suffer a fall, an on-the-field collision or some other traumatic blow, the first thing the doctor will do is take an X-ray, CT scan or MRI to determine if anything has been damaged internally. Researchers at the National Institute of Standards and Technology (NIST) are using the same principle, but in a more powerful form, to detect corrosion, the primary danger threatening the health of the steel framework within the nation's bridges, roads and other aging physical infrastructure.

What they have developed is a noninvasive "spectral fingerprint" technique that reveals the corrosion of concrete-encased steel before it can cause any significant degradation of the structure it supports. The detection method is described in a new paper in the journal Applied Magnetic Resonance.


An abandoned building on Northern California's McAbee Beach shows the destructive power of corrosion on a steel-reinforced concrete structure. A new NIST evaluation method using terahertz waves can detect the early stages of corrosion on steel rebars directly through their concrete covering.

Credit: With Permission by Per Loll, Denmark

When water and oxygen corrode iron, different iron oxide products are produced, with the two most common being goethite and hematite. "The brown rust that forms when you leave a hammer out in the rain is mostly goethite, and when a steel reinforcing bar [rebar] corrodes inside a concrete bridge deck, that is mostly hematite," said NIST physical chemist Dave Plusquellic.

"We have shown in our new study with goethite, and our previous work with hematite (link is external), that terahertz radiation--electromagnetic waves with frequencies 10 to 100 times higher than the microwaves used to cook food--can detect both corrosion products in the early stages of formation."

Current imaging methods for uncovering corrosion use microwaves to record changes in the physical state of the affected steel, such as changes in the thickness of a rebar within the concrete of a bridge or other structure.

"Unfortunately, by the time such changes are detectable, the corrosive process is already well on its way toward causing cracks in the concrete," said physicist and NIST Fellow Ed Garboczi.

Additionally, Garboczi said most of the microwave imaging methods rely on comparisons with baseline measurements of the steel taken at the time of construction, a practice that only goes back about 25 years.

"That's a real problem since the average age of the 400,000 steel-reinforced concrete bridges in the United States is 50 years and there is no baseline data available for many of them," he explained.

The NIST terahertz wave detection method works because goethite and hematite are antiferromagnetic. In other words, the pairs of electrons sitting side-by-side within the iron atoms in these materials spin in opposite directions, leaving them unaffected by external magnetic fields. In contrast, the electrons in the iron atoms of a household magnet, which is ferromagnetic, spin in the same direction and are either attracted or repelled by external magnetic fields.

"Terahertz waves will flip the spin alignment of one of the electrons in a pair and get absorbed by hematite or goethite," Plusquellic said. "Using a millimeter wave detector, we discovered that this antiferromagnetic absorption only occurs within narrow frequency ranges in the terahertz region of the electromagnetic spectrum--yielding 'spectral fingerprints' unique to goethite and hematite, and in turn, iron corrosion."

With current advances in terahertz sources and detectors, the new NIST nondestructive evaluation technique has the potential to rapidly detect tiny amounts of iron-bearing oxides from early-stage corrosion of steel surrounded by concrete, polymer composites (such as pipe insulation in a factory), paints and other protective materials.

"In the laboratory, we have demonstrated that a 2-milliwatt terahertz source can produce waves that detect hematite through 25 millimeters of concrete," Plusquellic said. "Using terahertz sources with powers in the hundreds of milliwatts and state-of-the-art receivers with unprecedented signal-to-noise ratios, we should be able to penetrate 50 millimeters, the thickness of the concrete covering the first layer of rebar used in most steel-reinforced concrete structures."

Next up for the NIST team will be an attempt to find a spectral fingerprint for akageneite, an iron corrosion product formed in the presence of chloride ions, which come from sources such as seawater and road deicing salt.

"Akageneite can cause problems in steel-reinforced concrete similar to those seen with goethite and hematite," Garboczi said.

The antiferromagnetic corrosion detection method was first conceived in 2009 by the late William Egelhoff, a NIST fellow and pioneer in the field of magnetic materials.

###

S.G. Chou, P.E. Stutzman, V. Provenzano, R.D. McMichael, J. Surek, S. Wang, D.F. Plusquellic and E.J. Garboczi. "Using Terahertz Waves to Identify the Presence of Goethite via Antiferromagnetic Resonance." Applied Magnetic Resonance (April 2017). DOI: 10.1007/s00723-017-0884-y

Media Contact

Michael E. Newman
michael.newman@nist.gov
301-975-3025

 @usnistgov

http://www.nist.gov 

Michael E. Newman | EurekAlert!

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>