Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbullet hits confirm graphene’s strength

01.12.2014

Rice University lab test material for suitability in body armor, spacecraft protection

Graphene’s great strength appears to be determined by how well it stretches before it breaks, according to Rice University scientists who tested the material’s properties by peppering it with microbullets.


Rice University scientists fired microbullets at supersonic speeds in experiments that show graphene is 10 times better than steel at absorbing the energy of a penetrating projectile. (Credit: Jae-Hwang Lee/Rice University)

The two-dimensional carbon honeycomb discovered a decade ago is thought to be much stronger than steel. But the Rice lab of materials scientist Edwin “Ned” Thomas didn’t need even close to a pound of graphene to prove the material is on average 10 times better than steel at dissipating kinetic energy.

The researchers report in the latest edition of Science that firing microscopic projectiles at multilayer sheets of graphene allowed the scientists to determine just how hard it is to penetrate at the nano level – and how strong graphene could be in macroscopic applications.

Thomas suggested the technique he and his research group developed could help measure the strength of a wide range of materials.

While other labs have looked extensively at graphene’s electronic properties and tensile strength, nobody had taken comprehensive measurements of its ability to absorb an impact, Thomas said. His lab found graphene’s ability to simultaneously be stiff, strong and elastic gives it extraordinary potential for use as body armor or for shielding spacecraft.

The lab pioneered its laser-induced projectile impact test (LIPIT), which uses the energy from a laser to drive microbullets away from the opposite side of an absorbing gold surface at great speed. In 2012, they first used an earlier version of LIPIT to determine the properties of multiblock copolymers that could not only stop microbullets but also completely encase them.

Since that study, Thomas and lead author Jae-Hwang Lee, a former research scientist at Rice and now an assistant professor at the University of Massachusetts at Amherst, have enhanced their technique to fire single microscopic spheres with great precision at speeds approaching 3 kilometers per second, much faster than a speeding bullet from an AK-47.

The researchers built a custom stage to line up multilayer graphene sheets mechanically drawn from bulk graphite. They tested sheets ranging from 10 to 100 nanometers thick (up to 300 graphene layers). They then used a high-speed camera to capture images of the projectiles before and after hits to judge their speed and viewed microscope images of the damage to the sheets.

In every case, the 3.7-micron spheres punctured the graphene. But rather than a neat hole, the spheres left a fractured pattern of “petals” around the point of impact, indicating the graphene stretched before breaking.

“We started writing the paper about the petals, but as we went along, it became evident that wasn’t really the story,” said Thomas, the William and Stephanie Sick Dean of Rice’s George R. Brown School of Engineering. “The bullet’s kinetic energy interacts with the graphene, pushes forward, stretches the film and is slowed down.”

The experiments revealed graphene to be a stretchy membrane that, in about 3 nanoseconds before puncture, distributes the stress of the bullet over a wide area defined by a shallow cone centered at the point of impact. Tensile stress cannot travel faster than the speed of sound in materials, and in graphene, it’s much faster than the speed of sound in air (1,125 feet per second).

“For graphene, we calculated the speed at 22.2 kilometers per second, which is higher than any other known material,” Thomas said.

As a microbullet impacts the graphene, the diameter of the cone it creates – determined by later examination of the petals – provides a way to measure how much energy the graphene absorbs before breaking.

“The game in protection is getting the stress to distribute over a large area,” Thomas said. “It’s a race. If the cone can move out at an appreciable velocity compared with the velocity of the projectile, the stress isn’t localized beneath the projectile.”

Controlled layering of graphene sheets could lead to lightweight, energy-absorbing materials. “Ideally you would have a lot of independent layers that aren’t too far apart or so close that they’re touching, because the loading goes from tensile to compressive,” Thomas said. That, he said, would defeat the purpose of spreading the strain away from the point of impact.

He expects LIPIT will be used to test many experimental materials. “Before you scale a project up, you’ve got to know what will work,” he said. “LIPIT lets us develop rapid methodologies to test nanoscale materials and find promising candidates. We’re working to demonstrate to NASA and the military that these microscopic tests are relevant to macroscopic properties.”

The paper’s co-authors are Rice graduate student Phillip Loya and Jun Lou, an associate professor of materials science and nanoengineering. The Defense Threat Reduction Agency and the Welch Foundation supported the research.

Ned Thomas shows how firing microbullets at graphene quantify its strength in this video: http://youtu.be/Sevm_DHu05o

Read the abstract at http://www.sciencemag.org/content/346/6213/1092.short

David Ruth | EurekAlert!

Further reports about: graphene graphene sheets kinetic kinetic energy materials microscopic properties technique

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>