Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measurement of the dynamic mechanical properties of viscous materials

03.06.2016

DIN standard for the determination of the tip radius and the probing force of stylus instruments developed

In microsystems metallic components are increasingly being replaced by those from low-cost polymers. For the thickness measurement of polymers, there is now the DIN standard 32567 available, which describes both, optical and tactile surface measuring methods for the precise measurement of the thickness of polymer layers.


Reference cantilever made of silicon for determining the probing force of contact stylus instruments. From the bending of the beam at the end mark, the contact force is determined.

PTB

The standard describes methods by which both, the contact force and the tip radius of stylus instruments can be measured, a basic condition for non-destructive precision tactile profile measurements.

From motion sensor to smartphones - many everyday products increasingly contain parts which are made of polymer materials. The desired operation of these components depends not only on the dimensions, often also on the mechanical properties of these materials.

The dimensions can be measured optically or tactilely. However, in the thickness measurement of transparent materials with optical measuring methods, but also in the stylus measurement of coatings on hard substrates systematic deviations of the measured thickness are observed. In tactile methods, the main influencing factors are the probing force and the tip radius.

With viscous materials whose mechanical properties are time-dependent, also different scanning speeds affect the level of systematic deviations. PTB has therefore, in cooperation with other European national metrology institutes, developed a method for correcting these systematic errors, which has been standardized in DIN 32567. In the standard, the main influencing factors are shown for tactile and optical measurements and methods for the estimation, correction and reduction of systematic errors are described.

Contact at PTB

Dr. Uwe Brand, Working Group 5.11 Hardness and Tactile Probing Methods, Telefon: 0531-592 5111, E-Mail: uwe.brand@ptb.de

Further Information

• Brand, U.; Beckert, E.; Beutler, A.; Dai, G.; Stelzer, C.; Hertwig, A.; Klapetek, P.; Koglin, J.; Thelen, R. and Tutsch, R.: Comparison of optical and tactile layer thickness measurements of polymers and metals on silicon or SiO2. Meas. Sci. Technol. 22 (2011) 094021 (14pp)
• DIN 32567 Fertigungsmittel für Mikrosysteme — Ermittlung von Materialeinflüssen auf die Messunsicherheit in der optischen und taktilen dimensionellen Messtechnik. Teile 1 – 5
• Li, Z., Brand, U. und Ahbe, T.: Step height measurement of microscale thermoplastic polymer specimens using contact stylus profilometry. Prec. Eng. 45, 110–117 (2016)

Weitere Informationen:

http://www.ptb.de/cms/en/presseaktuelles/journalisten/press-releases/press-relea...

Imke Frischmuth | Physikalisch-Technische Bundesanstalt (PTB)

Further reports about: PTB materials measurement mechanical properties motion sensor polymer layers

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>