Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Measurement Into Biological Polymer Networks

11.03.2011
The development of a new measurement technology under a research project funded by the Air Force Office of Scientific Research and the National Science Foundation is probing the structure of composite and biological materials.

"Our results have provided some of the first microscopic insights into a sixty year old puzzle about the way polymeric networks react to repeated shear strains," said Dr. Daniel Blair, Assistant Professor, and principal investigator of the Soft Matter Group in the Department of Physics at Georgetown University.

Blair, Professor Andreas Bausch and other researchers at Technische Universtaet Muenchen (Technical University of Munich) used the muscle filament known as actin to construct a unique polymer network. In their quest to understand more about bio-polymers, they developed the rheometer and confocal microscope system (measures the mechanical properties of materials), which provide a unique and unprecedented level of precision and sensitivity for investigating polymeric systems which were previously too small to visualize during mechanical stress experiments. The rheometer and confocal microscopes clearly visualized the fluorescently labeled actin network and they filmed the polymer filaments'movement in 3-D when mechanical stress was applied.

The rheometer and confocal microscopes, will help to lay the groundwork for future generations of materials that will possibly be used to create synthesized muscle tissue for the Air Force. These materials may even be ideally suited for powering micro-robots. The rheometer and confocal microscopes enabled the scientists to see the shearing process during the Mullins Effect when biological polymers become dramatically softer as seen in conventional polymers. Moreover, these materials also demonstrate dramatic strengthening in a way that is very different compared to conventional polymeric solids.

The researchers' next steps will be to use the Mullins Effect as a mechanical standard for understanding the properties of composite and biological networks.

"We will use confocal-rheology as a benchmark system for generating new collaborations and expanding the technique to other AFOSR sponsored projects," said Blair. "For example, in collaboration with Dr. Fritz Vollrath of the Oxford Silk Group and Dr. David Kaplan from Tufts University, we are investigating how shear stress influences the formation of silk fibers."

Blair noted that the new technology is impacting a number of other AFOSR supported projects as a platform for investigating the strengthening of nano-composite networks such as carbon nanotubes and cellulose nanofibers embedded in conventional materials.

Blair predicts that there will be possible private sector uses for the new technology in the area of the green revolution and its inherent smart, soft biological materials.

ABOUT AFOSR:
The Air Force Office of Scientific Research, located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.

Maria Callier | EurekAlert!
Further information:
http://www.afosr.af.mil

More articles from Materials Sciences:

nachricht Sustainable ceramics without a kiln
28.02.2017 | ETH Zurich

nachricht Existence of a new quasiparticle demonstrated
28.02.2017 | Institute of Science and Technology Austria

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>