Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Material solutions – inside and on top

18.01.2016

The Fraunhofer-Institute for Silicate Research ISC focuses on developing materials with new or enhanced properties for customized applications. The materials work as coatings or can be used to structure functional elements to upgrade conventional substrates. Established upscaling methods ensure the implementation of the materials into industrial production processes. Fraunhofer ISC presents its developments for the micro- and nanoscale at the nano tech 2016 (Tokyo) in the German Pavilion from January 27 to 29, 2016.

Upgrading with functional coatings


Roll-to-roll processing of various functional coatings.

Source: K. Dobberke for Fraunhofer ISC


Arbitrary 3D structures in the µm-scale using two-photon polymerization (2PP) technology.

Source: Fraunhofer ISC

Functional coatings are an ideal way to endow products with new properties by using just a minimum of extra material. Fraunhofer ISC develops customized coatings based on inorganic materials and hybrid polymers suited for roll-to-roll processing. These coatings are non-flammable, environmentally friendly and suitable for flexible applications.

The standard coating employing ORMOCER®s may serve as a protection layer for microelectronics and simultaneously works as passivation and encapsulation agent without degrading the performance. In battery systems, ORMOCER®s can be used as polymer electrolytes for flexible battery cells or as a protecting shell for electrode materials to enhance the performance of thin solid state cells.

Furthermore, improved ultra-barrier ORMOCER® coatings provide insulation for flexible organic electronic devices such as light emitting diodes, solar cells or OLED displays to protect them from water and oxygen in order to guarantee an adequately long lifetime. The ultra-barrier layers are flexible, transparent and adaptable to specific customer requirements.

Biodegradable coatings with novel bioORMOCER®s developed by Fraunhofer ISC for food and pharmaceutical packaging are the next step. These bioORMOCER®s can upgrade conventional films in their barrier properties against water vapor, oxygen, flavors, plasticizers and additionally show antimicrobial activity.

Electrochromic coatings made from conductive polymers are integrated in film laminates for intelligent light shading systems in windows of aircraft cabins, cars, or buildings. They are processed cost-efficiently at low temperatures and feature low weight, high flexibility and high coloration efficiency.

Upscaling with approved methods

Fraunhofer ISC performs material syntheses from lab to pilot scale employing modular roll-to-roll processing equipment from COATEMA Coating Machinery GmbH. The institute offers to run test coatings under clean room conditions and develops formulations according to the individual production requirements of partners from the industry. Hence, implementation into production processes is fast and easy. Interested companies are invited to visit the COATEMA Coating Machinery GmbH booth at nano tech 2016 to obtain information about equipment and R&D for coating, printing and laminating in roll-to-roll and sheet-to-sheet configurations.

In addition, Fraunhofer ISC provides customized syntheses of nanoparticles for the preparation of paints, printing inks or plastics formulations. ISC has established an infrastructure for upscaling the preparation of nanoparticle suspensions in the 100 liter batch range. In close cooperation with the European Center for Dispersion Technologies (EZD), also exhibiting at the German Pavilion of nano tech 2016, Fraunhofer ISC is developing an open access infrastructure for companies interested in the production of high quality (multi-)functional nano-composites on a pilot scale. The pilot reactor will be able to produce batch sizes of nano-composite polymers and coatings in the range of 20 to 100 kg.

Additive manufacturing on the micro- and nanoscale

Using modern 3D printing techniques, the Fraunhofer-Center HTL – part of the Fraunhofer ISC – develops and fabricates customer-specific parts, prototypes and small-scale series using metals and metal-ceramic composites as well as porous and dense ceramics. The used processes stereolithography and binder jetting allow to manufacture filigree and complex components and to fabricate multiple and also diverse parts on the macro- and microscale while shortening development cycles, minimizing or even eliminating elaborate post-processing steps, and saving high expenses for models. Further services are the characterization and optimization of parts and processes.

Fraunhofer ISC uses the two-photon-polymerization (2PP) method to generate microoptical structures on the nanoscale with ORMOCER® materials yielding optical devices like fan-out elements as core and cladding or deflection prisms or structures for microlenses. ORMOCER®s show high thermal stability, a low optical loss in the NIR region and an adjustable refractive index over a wide range. By means of the two-photon-absorption (TPA), Fraunhofer ISC can manufacture arbitrary 3D optical microscale components as well, such as photonic crystal structures or diffractive optical elements with different height levels. The technology allows an easy and low-cost production in comparison to conventional methods. In the field, Fraunhofer ISC cooperates with its spin-off Multiphoton Optics GmbH that sells 3D manufacturing equipment for optical packages and displays its competencies at the neighboring booth in the German Pavilion.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.htl.fraunhofer.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Materials Sciences:

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

nachricht Neutrons provide insights into increased performance for hybrid perovskite solar cells
24.04.2018 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>