Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the invisible visible: Color-changing indicators highlight microscopic damage

15.01.2016

Damage developing in a material can be difficult to see until something breaks or fails. A new polymer damage indication system automatically highlights areas that are cracked, scratched or stressed, allowing engineers to address problem areas before they become more problematic.

The early warning system would be particularly useful in applications like petroleum pipelines, air and space transport, and automobiles - applications where one part's failure could have costly ramifications that are difficult to repair. Led by U. of I. materials science and engineering professor Nancy Sottos and aerospace engineering professor Scott White, the researchers published their work in the journal Advanced Materials.


When cracks form, microbeads embedded in the material break open and cause a chemical reaction that highlights the damaged area.

Image courtesy Nancy Sottos

"Polymers are susceptible to damage in the form of small cracks that are often difficult to detect. Even at small scales, crack damage can significantly compromise the integrity and functionality of polymer materials," Sottos said. "We developed a very simple but elegant material to autonomously indicate mechanical damage."

The researchers embedded tiny microcapsules of a pH-sensitive dye in an epoxy resin. If the polymer forms cracks or suffers a scratch, stress or fracture, the capsules break open. The dye reacts with the epoxy, causing a dramatic color change from light yellow to a bright red - no additional chemicals or activators required.

The deeper the scratch or crack, the more microcapsules are broken, and the more intense the color. This helps to assess the extent of the damage. Even so, tiny microscopic cracks of only 10 micrometers are enough to cause a color change, letting the user know that the material has lost some of its structural integrity.

""Detecting damage before significant corrosion or other problems can occur provides increased safety and reliability for coated structures and composites," White said. White and Sottos are affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I.

The researchers demonstrated that the damage indication system worked well for a variety of polymer materials that can be applied to coat different substrates including metals, polymers and glasses. They also found that the system has long-term stability - no microcapsule leaking to produce false positives, and no color fading.

In addition to averting unforeseen and costly failure, another economic advantage of the microcapsule system is the low cost, Sottos said.

"A polymer needs only to be 5 percent microcapsules to exhibit excellent damage indication ability," Sottos said. "It is cost effective to acquire this self-reporting ability."

Now, the researchers are exploring further applications for the indicator system, such as applying it to fiber-reinforced composites, as well as integrating it with the group's previous work in self-healing systems.

"We envision this self-reporting ability can be seamlessly combined with other functions such as self-healing and corrosion protection to both report and repair damage," Sottos said. "Work is in progress to combine the ability to detect new damage with self-healing functionality and a secondary indication that reveals that crack healing has occurred."

###

The BP International Centre for Advanced Materials supported this work. Postdoctoral researcher Wenle Li was the first author of the work, and graduate students Christopher Matthews, Michael Odarczenko and Ke Yang were co-authors.

Editor's notes: To reach Nancy Sottos, call 217-333-1041; email: n-sottos@illinois.edu. To reach Scott White, call 217-333-1077; email swhite@illinois.edu.

The paper "Autonomous Indication of Mechanical Damage in Polymeric Coatings" is available online at http://onlinelibrary.wiley.com/doi/10.1002/adma.201505214/full.

Media Contact

Liz Ahlberg
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Liz Ahlberg | EurekAlert!

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>