Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making New Materials an Atomic Layer at a Time

18.04.2014

Researchers at Penn State’s Center for 2-Dimensional and Layered Materials and the University of Texas at Dallas have shown the ability to grow high quality, single-layer materials one on top of the other using chemical vapor deposition.

 This highly scalable technique, often used in the semiconductor industry, can produce new materials with unique properties that could be applied to solar cells, ultracapacitors for energy storage, or advanced transistors for energy efficient electronics, among many other applications.


Yu-Chuan Lin, Penn State

A photosensor fabricated on the MoS2/graphene heterostructure

“People have been trying to stack these layered materials using the scotch tape method (an exfoliation method developed by Nobel laureates Novoselov and Geim to produce graphene), but that leaves residue on the layers and is not scalable,” explains Joshua Robinson of Penn State, corresponding author on a recent article published online in ACS Nano. Other groups have utilized the chemical vapor deposition method to grow layered materials on a copper substrate, but this method requires some sophisticated techniques to transfer the layered material to a more functional substrate without causing tears or contamination.

Robinson and his colleagues employed a more direct method, using chemical vapor deposition to grow a layer of quasi-free-standing epitaxial graphene (QFEG) on a silicon carbide substrate, followed by a layer of molybdenum disulfide (MoS2), a metal dichalcogenide compound widely used as a lubricant. In order to test the quality of the MoS2 on graphene, the researchers used the material to build a photodetector device to measure the layered material’s efficiency at converting photons to electrons. They found that the response of the MoS2/QFEG material was 100 times higher than MoS2 alone.

... more about:
»ACS »Atomic »Layer »MoS2 »Nano »carbide »graphene »materials »photodetector

For devices, the QFEG method, which introduces a layer of hydrogen atoms between the substrate and the graphene and thereby decouples the graphene layer from the underlying silicon carbide, proved to be a better choice than the more standard as-grown graphene. Robinson says, “In general QFEG is more interesting, and from a device point of view, it’s critical.”

To see if quasi-free-standing graphene was a suitable template for the growth of other artificially stacked atomic layers, the team synthesized two other van der Waals solids: tungsten diselenide, and hexagonal boron nitride. (van der Waals solids have strong in-plane bonding but weak interlayer bonding.) They determined that epitaxial graphene was “an excellent candidate for building large-area vdW solids that will have extraordinary properties and performances.”

Industry has already shown strong interest in 2D layered materials for RF applications, low-power and low-cost semiconductors, and for displays on flexible substrates. “This is the first step,” Robinson says. “To truly control properties we will need to look at a variety of these systems that should turn out to have entirely new properties when stacked together.”

Contributors to the ACS Nano article, “Direct Synthesis of van der Waals Solids,” are lead author Yu-Chuan Lin, a Ph.D. candidate in Robinson’s group, Nestor Perea-Lopez, Jie Li, Zhong Lin, Chia Hui Lee, Lazaro Calderon, Paul N. Brown, Michael S. Bresnehan, Theresa Mayer, Mauricio Terrones, and Joshua Robinson, all of Penn State, and Ning Lu, Xin Peng, Ce Sun, and Moon J. Kim, all of University of Texas at Dallas. The work at Penn State and UT Dallas was supported by the Center for Low Energy Systems Technology (LEAST), and by the National Nanotechnology Infrastructure Network at Penn State. Contact Joshua Robinson at jar403@psu.edu. For more information on 2D materials, visit the Penn State Center for 2-Dimensional and Layered Materials at mri.psu.edu/centers/2dlm/. (DOI: 10.1021/nn5003858)

Yu-Chuan Lin | newswise

Further reports about: ACS Atomic Layer MoS2 Nano carbide graphene materials photodetector

More articles from Materials Sciences:

nachricht Strength and ductility for alloys
27.05.2016 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Computational high-throughput screening finds hard magnets containing less rare earth elements
25.05.2016 | Fraunhofer-Institut für Werkstoffmechanik IWM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>