Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making molecules that twinkle

16.02.2016

Single step process transforms carbon dioxide into star-shaped molecules that are promising building blocks for useful polymeric materials.

The power of carbon dioxide has been harnessed by Singapore's Agency for Science, Technology and Research (A*STAR) researchers to make two symmetrical star-shaped molecules in a single step. [1] These molecules could be used to build complex, functional polymeric materials useful for catalysis, coatings and drug delivery.


Carbon dioxide is a useful feedstock gas for synthesis of complex, functional materials. © 2016 A*STAR Institute of Materials Research and Engineering

Carbon dioxide is a cheap and accessible base material, explains lead researcher He-Kuan Luo from the A*STAR Institute of Materials Research and Engineering. “Therefore, many people are searching for efficient methods to transform carbon dioxide into useful molecules,” he explains. “But transforming carbon dioxide is not typically easy.”

His team has developed a simple route to use carbon dioxide to make aromatic compounds that can be used as building blocks for more complicated materials. They created symmetrical benzene rings with three or six identical arms comprising carbonate groups terminated by carbon–carbon triple bonds, or ‘alkynes’. “We can integrate the carbon dioxide into the molecule without the need for high temperatures or high pressure,” says Luo.

The molecules were made in a single step. The team introduced carbon dioxide from dry ice to an alcohol with an alkyne end group and benzene rings decorated with either three or six alkyl bromide groups. “At the beginning, however, only some of the branches reacted so we could not get the desired compound,” Luo explains.

The team fine-tuned the process and found the reactions worked most efficiently at room temperature, with the carbon dioxide at atmospheric pressure and with the addition of both a promoter tetrabutylammonium bromide (TBAB) and the base potassium carbonate. “We tried many times and after a few months, we finally got [the bromide groups in] all six branches to react [with the alcohol],” he says.

Adding the promoter to the mix doubled the product produced. “It is likely that the tetrabutylammonium cation enhances the rate of carbon dioxide incorporation by stabilizing the carbonate anion,” says Luo.

The reaction time is also vital. “We needed to be patient and let the reaction run to completion to ensure that all the branches reacted.” The synthesis of the three-armed and six-armed star-shaped molecule took two and four days respectively.

The alkynes on the end of each arm in these molecules should theoretically be able to react with a host of different molecules using simple click chemistry – to produce a range of complex or functional materials. “We are currently trying to use the six-armed branched molecule to build more functional star-shaped molecules, which may find applications in catalysis, coatings and drug delivery,” says Luo.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Reference

[1] Khoo, R. S. H., Lee, A. M. X., Braunstein, P., Hor, T. S. A. & Luo, H.-K. A facile one-step synthesis of star-shaped alkynyl carbonates from CO2. Chemical Communications 51, 11225–11228 (2015).


Associated links
Original article from Agency for Science, Technology and Research

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>