Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making molecules that twinkle


Single step process transforms carbon dioxide into star-shaped molecules that are promising building blocks for useful polymeric materials.

The power of carbon dioxide has been harnessed by Singapore's Agency for Science, Technology and Research (A*STAR) researchers to make two symmetrical star-shaped molecules in a single step. [1] These molecules could be used to build complex, functional polymeric materials useful for catalysis, coatings and drug delivery.

Carbon dioxide is a useful feedstock gas for synthesis of complex, functional materials. © 2016 A*STAR Institute of Materials Research and Engineering

Carbon dioxide is a cheap and accessible base material, explains lead researcher He-Kuan Luo from the A*STAR Institute of Materials Research and Engineering. “Therefore, many people are searching for efficient methods to transform carbon dioxide into useful molecules,” he explains. “But transforming carbon dioxide is not typically easy.”

His team has developed a simple route to use carbon dioxide to make aromatic compounds that can be used as building blocks for more complicated materials. They created symmetrical benzene rings with three or six identical arms comprising carbonate groups terminated by carbon–carbon triple bonds, or ‘alkynes’. “We can integrate the carbon dioxide into the molecule without the need for high temperatures or high pressure,” says Luo.

The molecules were made in a single step. The team introduced carbon dioxide from dry ice to an alcohol with an alkyne end group and benzene rings decorated with either three or six alkyl bromide groups. “At the beginning, however, only some of the branches reacted so we could not get the desired compound,” Luo explains.

The team fine-tuned the process and found the reactions worked most efficiently at room temperature, with the carbon dioxide at atmospheric pressure and with the addition of both a promoter tetrabutylammonium bromide (TBAB) and the base potassium carbonate. “We tried many times and after a few months, we finally got [the bromide groups in] all six branches to react [with the alcohol],” he says.

Adding the promoter to the mix doubled the product produced. “It is likely that the tetrabutylammonium cation enhances the rate of carbon dioxide incorporation by stabilizing the carbonate anion,” says Luo.

The reaction time is also vital. “We needed to be patient and let the reaction run to completion to ensure that all the branches reacted.” The synthesis of the three-armed and six-armed star-shaped molecule took two and four days respectively.

The alkynes on the end of each arm in these molecules should theoretically be able to react with a host of different molecules using simple click chemistry – to produce a range of complex or functional materials. “We are currently trying to use the six-armed branched molecule to build more functional star-shaped molecules, which may find applications in catalysis, coatings and drug delivery,” says Luo.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering


[1] Khoo, R. S. H., Lee, A. M. X., Braunstein, P., Hor, T. S. A. & Luo, H.-K. A facile one-step synthesis of star-shaped alkynyl carbonates from CO2. Chemical Communications 51, 11225–11228 (2015).

Associated links
Original article from Agency for Science, Technology and Research

A*STAR Research | Research SEA
Further information:

More articles from Materials Sciences:

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>