Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making molecules that twinkle

16.02.2016

Single step process transforms carbon dioxide into star-shaped molecules that are promising building blocks for useful polymeric materials.

The power of carbon dioxide has been harnessed by Singapore's Agency for Science, Technology and Research (A*STAR) researchers to make two symmetrical star-shaped molecules in a single step. [1] These molecules could be used to build complex, functional polymeric materials useful for catalysis, coatings and drug delivery.


Carbon dioxide is a useful feedstock gas for synthesis of complex, functional materials. © 2016 A*STAR Institute of Materials Research and Engineering

Carbon dioxide is a cheap and accessible base material, explains lead researcher He-Kuan Luo from the A*STAR Institute of Materials Research and Engineering. “Therefore, many people are searching for efficient methods to transform carbon dioxide into useful molecules,” he explains. “But transforming carbon dioxide is not typically easy.”

His team has developed a simple route to use carbon dioxide to make aromatic compounds that can be used as building blocks for more complicated materials. They created symmetrical benzene rings with three or six identical arms comprising carbonate groups terminated by carbon–carbon triple bonds, or ‘alkynes’. “We can integrate the carbon dioxide into the molecule without the need for high temperatures or high pressure,” says Luo.

The molecules were made in a single step. The team introduced carbon dioxide from dry ice to an alcohol with an alkyne end group and benzene rings decorated with either three or six alkyl bromide groups. “At the beginning, however, only some of the branches reacted so we could not get the desired compound,” Luo explains.

The team fine-tuned the process and found the reactions worked most efficiently at room temperature, with the carbon dioxide at atmospheric pressure and with the addition of both a promoter tetrabutylammonium bromide (TBAB) and the base potassium carbonate. “We tried many times and after a few months, we finally got [the bromide groups in] all six branches to react [with the alcohol],” he says.

Adding the promoter to the mix doubled the product produced. “It is likely that the tetrabutylammonium cation enhances the rate of carbon dioxide incorporation by stabilizing the carbonate anion,” says Luo.

The reaction time is also vital. “We needed to be patient and let the reaction run to completion to ensure that all the branches reacted.” The synthesis of the three-armed and six-armed star-shaped molecule took two and four days respectively.

The alkynes on the end of each arm in these molecules should theoretically be able to react with a host of different molecules using simple click chemistry – to produce a range of complex or functional materials. “We are currently trying to use the six-armed branched molecule to build more functional star-shaped molecules, which may find applications in catalysis, coatings and drug delivery,” says Luo.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Reference

[1] Khoo, R. S. H., Lee, A. M. X., Braunstein, P., Hor, T. S. A. & Luo, H.-K. A facile one-step synthesis of star-shaped alkynyl carbonates from CO2. Chemical Communications 51, 11225–11228 (2015).


Associated links
Original article from Agency for Science, Technology and Research

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>