Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making a tiny rainbow

29.01.2015

By varying the size and spacing of aluminum nanodisks, researchers generate images that contain over 300 colors and are not much wider than a human hair

A scheme for greatly increasing the number of colors that can be produced by arrays of tiny aluminum nanodisks has been demonstrated by A*STAR scientists1.


Three strategies for producing colors of pixels containing four aluminum nanodisks. Row 1: varying the nanodisk diameter (d) gives 15 colors. Row 2: Varying both the spacing (s) and diameter (d) of the nanodisks gives over 300 colors. Row 3: Varying the diameters (d1 and d2) of the two pairs of diametrically opposite nanodisks gives over 100 colors.

Modified, with permission, from Ref. 1 © 2014 American Chemical Society

Conventional pigments produce colors by selectively absorbing light of different wavelengths — for example, red ink appears red because it absorbs strongly in the blue and green spectral regions. A similar effect can be realized at a much smaller scale by using arrays of metallic nanostructures, since light of certain wavelengths excites collective oscillations of free electrons, known as plasmon resonances, in such structures.

An advantage of using metal nanostructures rather than inks is that it is possible to enhance the resolution of color images by a hundred fold. This enhanced resolution, at the diffraction limit of light, is critical for data storage, digital imaging and security applications. Aluminum — because of its low cost and good stability — is a particularly attractive material to use.

Joel Yang and Shawn Tan at the A*STAR Institute of Materials Research and Engineering and co-workers used an electron beam to form arrays of approximately 100-nanometer-tall pillars. They then deposited a thin aluminum layer on top of the pillars and in the gaps between them. In these arrays, each pixel was an 800-nanometer-long square containing four aluminum nanodisks.

The plasmon resonance wavelength varies sensitively with the dimensions of the nanostructures. Consequently, by varying the diameter of the four aluminum nanodisks in a pixel (all four nanodisks having the same diameter), the scientists were able to produce about 15 distinct colors — a good start, but hardly enough to faithfully reproduce full-color images.

By allowing two pairs of diametrically opposite nanodisks to have different diameters from each other, then varying the two diameters enabled them to increase this number to over 100. Finally, they generated over 300 colors by varying both the nanodisk diameter (but keeping all four diameters within a pixel the same) and the spacing between adjacent nanodisks in a pixel (see image). “This method is analogous to half-toning used in ink-based printing and results in a broad color gamut,” comments Yang.

The researchers demonstrated the effectiveness of their extended palette using a Monet painting. They reproduced the image using both a limited and extended palette, with a much better color reproduction from the extended palette. Amazingly, they shrank the image from 80 centimeters to a mere 300 micrometers — a 2,600-fold reduction in size.

“The use of a more cost-effective metal has the potential to move this technology closer to adoption,” Tan notes.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering. More information about the group’s research can be found at the Plasmonic and Semiconductor Nanostructures Laboratory webpage.

Reference
Tan, S. J., Zhang, L., Zhu, D., Goh, X. M., Wang, Y. M. et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Letters 14, 4023–4029 (2014). | article

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7166
http://www.researchsea.com

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>