Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism at Nanoscale

04.08.2015

Ames Laboratory physicists using N-V center optical magnetoscope to understand new magnetic nanomaterials

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials’ behavior at ever smaller scales. Physicists at the U.S. Department of Energy’s Ames Laboratory are building a unique optical magnetometer to probe magnetism at the nano- and mesoscale.


U.S. Department of Energy's Ames Laboratory

Physicists at the U.S. Department of Energy's Ames Laboratory are using an NV-magnetoscope to make use of nitrogen-vacancy centers in diamond to sense extremely weak magnetic fields in nano- and mesoscale magnetic materials.

The device, called a NV-magnetoscope, makes use of the unique quantum mechanical properties of nitrogen-vacancy (NV) centers in diamond. The low temperature NV-magnetoscope setup incorporates a confocal microscope (CFM) and an atomic-force scanning microscope (AFM). The NV-magnetoscope will be able to sense the extremely weak magnetic fields of just a handful of electrons with the spatial resolution of about 10 nanometers.

“We want to determine magnetic textures more precisely than ever before, at smaller scales than ever before,” said Ames Laboratory physicist Ruslan Prozorov. “Our hope is to understand nano- and mesoscale magnetism, learn how to control it and, eventually, use that to create a new generation of technologies.”

NV Centers

Usually, diamonds are most valued when they’re perfect and big. But physicists see special value in diamonds’ tiny flaws: a certain kind of imperfection, called a nitrogen vacancy (NV) center, serves as a very sensitive sensor of the magnetic field exactly at the location of the NV center. NV centers are created when a carbon atom is substituted with a nitrogen atom. When there is a missing atom or a “vacancy” nearby the nitrogen atom, this forms the stable pair called the nitrogen-vacancy center.

What makes NV centers so useful? Physicists know a lot about how NV centers work. (In fact, Ames Laboratory is home to one of the world’s leading experts on NV centers, theoretical physicist Viatcheslav Dobrovitski.) Scientists know how much energy it takes to push electrons from the lowest energy, or ground state, to an excited state and, more importantly, how much energy will be released in form of a red photon when the electron relaxes back to the low-energy level. NV centers’ well-defined quantum energy levels are extremely sensitive to a magnetic field. This sensitivity enables the NV-magnetoscope to detect very small magnetic fields – such as that produced by nano- and mesoscale magnetic materials, for example – by reading optical fluorescence emitted by the excited NV centers.

Green Laser Light Excites the NV Center

“Electrons start at low-energy quantum states. And the green laser light ‘kicks’ them to a high excited state. The rules of quantum mechanics say that those electrons must return back to the lower energy level. If an electron was excited from a non-magnetic level, it always emits red light. However, if it was excited from one of the low-energy magnetic levels, it most likely relaxes back without any emission.

Microwave radiation is used to scramble electrons between low-energy magnetic and non-magnetic states, reaching maximum population of the magnetic states when the interlevel energy difference matches microwave energy. Therefore, by scanning microwave frequency, red fluorescence will cause double-dip spectra, corresponding to two magnetic energy levels, split by the magnetic field (called Zeeman splitting). The distance between the dips is proportional to the magnetic field at the location of an NV center,” said Prozorov

Detector Counts Red Photons

As excited electrons lose energy and return back to the low energy state, they emit red light. A detector counts the number of red photons.

NV Centers “Feel” Sample’s Magnetic Fields

A roughly 100-nanometer-long diamond containing NV centers is attached to the AFM tip. The confocal microscope focuses on a single NV center, collecting red photons only from one tiny area while blocking out outside “noise.” The sample of interest is scanned below the NV center. The NV center “feels” the variation of magnetic fields produced by the sample.

“When the sample of interest is brought close enough to an NV center, the sample’s magnetic field is extended to the location of the NV center and affects the center’s quantum energy levels. By accurately moving the sample in two dimensions close to the NV center, we can reconstruct the magnetic field intensity map produced by the sample. This, in turn, gives access to the magnetic properties of the sample itself,” said Prozorov.

This work was supported by the DOE Office of Science.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Contact Information
Breehan Gerleman Lucchesi
Communications specialist
breehan@ameslab.gov
Phone: 515-294-9750

Breehan Gerleman Lucchesi | newswise
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>