Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism at Nanoscale

04.08.2015

Ames Laboratory physicists using N-V center optical magnetoscope to understand new magnetic nanomaterials

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials’ behavior at ever smaller scales. Physicists at the U.S. Department of Energy’s Ames Laboratory are building a unique optical magnetometer to probe magnetism at the nano- and mesoscale.


U.S. Department of Energy's Ames Laboratory

Physicists at the U.S. Department of Energy's Ames Laboratory are using an NV-magnetoscope to make use of nitrogen-vacancy centers in diamond to sense extremely weak magnetic fields in nano- and mesoscale magnetic materials.

The device, called a NV-magnetoscope, makes use of the unique quantum mechanical properties of nitrogen-vacancy (NV) centers in diamond. The low temperature NV-magnetoscope setup incorporates a confocal microscope (CFM) and an atomic-force scanning microscope (AFM). The NV-magnetoscope will be able to sense the extremely weak magnetic fields of just a handful of electrons with the spatial resolution of about 10 nanometers.

“We want to determine magnetic textures more precisely than ever before, at smaller scales than ever before,” said Ames Laboratory physicist Ruslan Prozorov. “Our hope is to understand nano- and mesoscale magnetism, learn how to control it and, eventually, use that to create a new generation of technologies.”

NV Centers

Usually, diamonds are most valued when they’re perfect and big. But physicists see special value in diamonds’ tiny flaws: a certain kind of imperfection, called a nitrogen vacancy (NV) center, serves as a very sensitive sensor of the magnetic field exactly at the location of the NV center. NV centers are created when a carbon atom is substituted with a nitrogen atom. When there is a missing atom or a “vacancy” nearby the nitrogen atom, this forms the stable pair called the nitrogen-vacancy center.

What makes NV centers so useful? Physicists know a lot about how NV centers work. (In fact, Ames Laboratory is home to one of the world’s leading experts on NV centers, theoretical physicist Viatcheslav Dobrovitski.) Scientists know how much energy it takes to push electrons from the lowest energy, or ground state, to an excited state and, more importantly, how much energy will be released in form of a red photon when the electron relaxes back to the low-energy level. NV centers’ well-defined quantum energy levels are extremely sensitive to a magnetic field. This sensitivity enables the NV-magnetoscope to detect very small magnetic fields – such as that produced by nano- and mesoscale magnetic materials, for example – by reading optical fluorescence emitted by the excited NV centers.

Green Laser Light Excites the NV Center

“Electrons start at low-energy quantum states. And the green laser light ‘kicks’ them to a high excited state. The rules of quantum mechanics say that those electrons must return back to the lower energy level. If an electron was excited from a non-magnetic level, it always emits red light. However, if it was excited from one of the low-energy magnetic levels, it most likely relaxes back without any emission.

Microwave radiation is used to scramble electrons between low-energy magnetic and non-magnetic states, reaching maximum population of the magnetic states when the interlevel energy difference matches microwave energy. Therefore, by scanning microwave frequency, red fluorescence will cause double-dip spectra, corresponding to two magnetic energy levels, split by the magnetic field (called Zeeman splitting). The distance between the dips is proportional to the magnetic field at the location of an NV center,” said Prozorov

Detector Counts Red Photons

As excited electrons lose energy and return back to the low energy state, they emit red light. A detector counts the number of red photons.

NV Centers “Feel” Sample’s Magnetic Fields

A roughly 100-nanometer-long diamond containing NV centers is attached to the AFM tip. The confocal microscope focuses on a single NV center, collecting red photons only from one tiny area while blocking out outside “noise.” The sample of interest is scanned below the NV center. The NV center “feels” the variation of magnetic fields produced by the sample.

“When the sample of interest is brought close enough to an NV center, the sample’s magnetic field is extended to the location of the NV center and affects the center’s quantum energy levels. By accurately moving the sample in two dimensions close to the NV center, we can reconstruct the magnetic field intensity map produced by the sample. This, in turn, gives access to the magnetic properties of the sample itself,” said Prozorov.

This work was supported by the DOE Office of Science.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Contact Information
Breehan Gerleman Lucchesi
Communications specialist
breehan@ameslab.gov
Phone: 515-294-9750

Breehan Gerleman Lucchesi | newswise
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>