Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic sense for everyone

03.02.2015

Scientists from Germany and Japan have developed a new magnetic sensor, which is thin, robust and pliable enough to be smoothly adapted to human skin, even to the most flexible part of the human palm. This is feeding the vision to equip humans with magnetic sense.

Magnetoception is a sense which allows bacteria, insects and even vertebrates like birds and sharks to detect magnetic fields for orientation and navigation. Humans are however unable to perceive magnetic fields naturally.


The new magnetic sensors are light enough (three gram per square meter) to float on a soap bubble.

Photo: IFW Dresden


Imperceptible magnetic sensor array on a human palm with one element connected to a readout circuit.

Photo: IFW Dresden

Dr. Denys Makarov and his team have developed an electronic skin with a magneto-sensory system that equips the recipient with a “sixth sense” able to perceive the presence of static or dynamic magnetic fields. These novel magneto-electronics are less than two micrometers thick and weights only three gram per square meter; they can even float on a soap bubble.

The new magnetic sensors withstand extreme bending with radii of less than three micrometer, and survive crumpling like a piece of paper without sacrificing the sensor performance. On elastic supports like a rubber band, they can be stretched to more than 270 percent and for over 1,000 cycles without fatigue. These versatile features are imparted to the magnetoelectronic elements by their ultra-thin and –flexible, yet robust polymeric support.

“We have demonstrated an on-skin touch-less human-machine interaction platform, motion and displacement sensorics applicable for soft robots or functional medical implants as well as magnetic functionalities for electronics on the skin”, says Michael Melzer, the PhD student of the ERC group led by Denys Makarov concentrating on the realization of flexible and stretchable magnetoelectronics.

“These ultrathin magnetic sensors with extraordinary mechanical robustness are ideally suited to be wearable, yet unobtrusive and imperceptible for orientation and manipulation aids” adds Prof. Oliver G. Schmidt, who is the director of the Institute for Integrative Nanosciences at the IFW Dresden.

This work was carried out at the Leibniz Institute for Solid State and Materials Research (IFW Dresden) and the TU Chemnitz in close collaboration with partners at the University of Tokyo and Osaka University in Japan.

The original work was published in Nat. Commun. 6, 6080 (2015) http://www.nature.com/ncomms/2015/150121/ncomms7080/full/ncomms7080.html

Contact:
Dr. Denys Makarov,
Institute for Integrative Nanosciences
at Leibniz Institute for Solid State and Materials Research (IFW Dresden)
Germany
E-mail: d.makarov@ifw-dresden.de
Phone: +49 351 4659 648

Prof. Oliver G. Schmidt
Institute for Integrative Nanosciences
at Leibniz Institute for Solid State and Materials Research (IFW Dresden)
Germany
E-mail: o.schmidt@ifw-dresden.de
Phone: +49 351 4659 810

Weitere Informationen:

http://www.ifw-dresden.de/press-and-events/press-release/current-news/article/-6...

Dr. Carola Langer | Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>