Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnesium alloys pave the way for new application areas

01.03.2016

A special processing technique now allows Selective Laser Melting (SLM) to be used with more difficult materials such as magnesium alloys, copper alloys, and other crack-prone, difficult-to-weld metals. The use of these materials makes it possible to employ the SLM process in new application areas. Several examples will be presented in a lecture session at the International Laser Technology Congress AKL’16 and the accompanying “Laser Technology Live” event at the Fraunhofer Institute for Laser Technology ILT.

Selective laser melting with “normal” materials such as stainless steel, aluminum or titanium alloys has already come of age in the world of production. The materials and processes have been extensively researched, and the related machinery is available from a number of vendors.


Picture 1: Implant (scaffold) with defined pore structure made from biodegradable magnesium alloy (WE43). It measures 10x10x7.5 mm³ with a strut thickness of approx. 400 µm.

© Fraunhofer ILT, Aachen, Germany / Volker Lannert.


Picture 2: Demonstrator for a topology-optimized motorcycle triple clamp (material: AZ91).

© Fraunhofer ILT, Aachen, Germany / Volker Lannert.

Things only get difficult when attempting to work with other materials such as Magnesium. It is not only 30% lighter than aluminum, but it can also be used to produce resorbable implants, thus making it extremely desirable for use in lightweight construction and medical technology applications.

Experts at Fraunhofer ILT have developed a processing technique that now makes it possible to work difficult materials using SLM. To combat heavy smoke formation, a new process chamber featuring optimized shielding gas flow was developed in cooperation with ILT spinoff Aconity3D for use with magnesium alloys. In addition, processes for use with copper alloys were optimized, as were special systems with high-temperature preheating for use with crack-prone and difficult-to-weld metals.

SLM allows for bioresorbable magnesium alloy implants

Desirable features of implants, such as tailored designs and complex structures, can be produced at no extra expense using SLM. As a material, magnesium offers the added advantage of being resorbable by the human body. Implants based on solid magnesium materials are already in use, but further benefits are promised for implants with pore structure.

The idea here is that new bony material will grow into the implant, while at the same time the metallic material is resorbed by the body. Fraunhofer ILT has developed an SLM process for magnesium alloy implants of this type, in which both the exact shape and pore size of the implant can be chosen. The biocompatibility of the implant prototypes has already been demonstrated in vitro.

While Fraunhofer ILT continues to research new materials and processes, SLM equipment for magnesium alloys is already available from Aconity3D.

Lighter and stronger: SLM allows for full topology optimization

The advantages of magnesium alloys have long been known in the worlds of aerospace and motorsports. These materials are 30% lighter than aluminum, yet they are also much more difficult to work.

The new SLM processing technique solves this problem in an elegant fashion. To explore the concept in detail, Fraunhofer ILT constructed a motorcycle triple clamp in 1:4 scale, by optimizing the entire topology of the component by computer. The objective here is to achieve full structural and weight optimization for comparable lightweight parts.

This represents one of the world’s first example of complex components made from magnesium alloys. In terms of quality, they are equal to other SLM products, yet with respect to strength they are even superior to cast parts.

This opens the door to new applications not only in lightweight construction, but also in medical technology, such as custom-made surgical bone replacements for cranio maxillofacial applications.

SLM live at AKL’16

In addition to magnesium alloys, research work is continuing on developing SLM for processing novel materials such as high-temperature alloys for turbomachinery applications or copper alloys. The various processes will be exhibited at the International Laser Technology Congress AKL’16 in Aachen.

As a part of the exhibition, Fraunhofer ILT will be once again offering around 70 “Laser Technology Live” presentations in addition to talks with subject area experts at its Application Center.

Events

International Laser Technology Congress AKL’16

April 27-29, 2016

Eurogress
Monheimsallee 48
52062 Aachen
Germany
www.lasercongress.org 

Laser Technology Live

April 27, 2016, 16:30

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Germany
www.ilt.fraunhofer.de

Contact

Dipl.-Phys. Lucas Jauer
Rapid Manufacturing Group
Phone +49 241 8906-360
lucas.jauer@ilt.fraunhofer.de

Dr.-Ing. Wilhelm Meiners
Group Manager Rapid Manufacturing
Phone +49 241 8906-301
wilhelm.meiners@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Materials Sciences:

nachricht Physicists gain new insights into nanosystems with spherical confinement
27.07.2017 | Johannes Gutenberg Universitaet Mainz

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>