Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnesium alloys pave the way for new application areas

01.03.2016

A special processing technique now allows Selective Laser Melting (SLM) to be used with more difficult materials such as magnesium alloys, copper alloys, and other crack-prone, difficult-to-weld metals. The use of these materials makes it possible to employ the SLM process in new application areas. Several examples will be presented in a lecture session at the International Laser Technology Congress AKL’16 and the accompanying “Laser Technology Live” event at the Fraunhofer Institute for Laser Technology ILT.

Selective laser melting with “normal” materials such as stainless steel, aluminum or titanium alloys has already come of age in the world of production. The materials and processes have been extensively researched, and the related machinery is available from a number of vendors.


Picture 1: Implant (scaffold) with defined pore structure made from biodegradable magnesium alloy (WE43). It measures 10x10x7.5 mm³ with a strut thickness of approx. 400 µm.

© Fraunhofer ILT, Aachen, Germany / Volker Lannert.


Picture 2: Demonstrator for a topology-optimized motorcycle triple clamp (material: AZ91).

© Fraunhofer ILT, Aachen, Germany / Volker Lannert.

Things only get difficult when attempting to work with other materials such as Magnesium. It is not only 30% lighter than aluminum, but it can also be used to produce resorbable implants, thus making it extremely desirable for use in lightweight construction and medical technology applications.

Experts at Fraunhofer ILT have developed a processing technique that now makes it possible to work difficult materials using SLM. To combat heavy smoke formation, a new process chamber featuring optimized shielding gas flow was developed in cooperation with ILT spinoff Aconity3D for use with magnesium alloys. In addition, processes for use with copper alloys were optimized, as were special systems with high-temperature preheating for use with crack-prone and difficult-to-weld metals.

SLM allows for bioresorbable magnesium alloy implants

Desirable features of implants, such as tailored designs and complex structures, can be produced at no extra expense using SLM. As a material, magnesium offers the added advantage of being resorbable by the human body. Implants based on solid magnesium materials are already in use, but further benefits are promised for implants with pore structure.

The idea here is that new bony material will grow into the implant, while at the same time the metallic material is resorbed by the body. Fraunhofer ILT has developed an SLM process for magnesium alloy implants of this type, in which both the exact shape and pore size of the implant can be chosen. The biocompatibility of the implant prototypes has already been demonstrated in vitro.

While Fraunhofer ILT continues to research new materials and processes, SLM equipment for magnesium alloys is already available from Aconity3D.

Lighter and stronger: SLM allows for full topology optimization

The advantages of magnesium alloys have long been known in the worlds of aerospace and motorsports. These materials are 30% lighter than aluminum, yet they are also much more difficult to work.

The new SLM processing technique solves this problem in an elegant fashion. To explore the concept in detail, Fraunhofer ILT constructed a motorcycle triple clamp in 1:4 scale, by optimizing the entire topology of the component by computer. The objective here is to achieve full structural and weight optimization for comparable lightweight parts.

This represents one of the world’s first example of complex components made from magnesium alloys. In terms of quality, they are equal to other SLM products, yet with respect to strength they are even superior to cast parts.

This opens the door to new applications not only in lightweight construction, but also in medical technology, such as custom-made surgical bone replacements for cranio maxillofacial applications.

SLM live at AKL’16

In addition to magnesium alloys, research work is continuing on developing SLM for processing novel materials such as high-temperature alloys for turbomachinery applications or copper alloys. The various processes will be exhibited at the International Laser Technology Congress AKL’16 in Aachen.

As a part of the exhibition, Fraunhofer ILT will be once again offering around 70 “Laser Technology Live” presentations in addition to talks with subject area experts at its Application Center.

Events

International Laser Technology Congress AKL’16

April 27-29, 2016

Eurogress
Monheimsallee 48
52062 Aachen
Germany
www.lasercongress.org 

Laser Technology Live

April 27, 2016, 16:30

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Germany
www.ilt.fraunhofer.de

Contact

Dipl.-Phys. Lucas Jauer
Rapid Manufacturing Group
Phone +49 241 8906-360
lucas.jauer@ilt.fraunhofer.de

Dr.-Ing. Wilhelm Meiners
Group Manager Rapid Manufacturing
Phone +49 241 8906-301
wilhelm.meiners@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>