Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-sought chiral anomaly detected in crystalline material

04.09.2015

A study by Princeton researchers presents evidence for a long-sought phenomenon -- first theorized in the 1960s and predicted to be found in crystals in 1983 -- called the "chiral anomaly" in a metallic compound of sodium and bismuth. The additional finding of an increase in conductivity in the material may suggest ways to improve electrical conductance and minimize energy consumption in future electronic devices.

"Our research fulfills a famous prediction in physics for which confirmation seemed unattainable," said N. Phuan Ong, Princeton's Eugene Higgins Professor of Physics, who co-led the research with Robert Cava, Princeton's Russell Wellman Moore Professor of Chemistry. "The increase in conductivity in the crystal and its dramatic appearance under the right conditions left little doubt that we had observed the long-sought chiral anomaly."


This sketch illustrates the notion of handedness, or chirality, which is found throughout nature. Most chemical structures and many elementary particles come in right- and left-handed forms.

Credit: Princeton University

The study was published online today in the journal Science.

The chiral anomaly - which describes how elementary particles can switch their orientation in the presence of electric and magnetic fields - stems from the observation that right- and left-handedness (or "chirality" after the Greek word for hand) is ubiquitous in nature. For example, most chemical structures and many elementary particles come in right- and left-handed forms that are mirror images of each other.

Early research leading up to the discovery of the anomaly goes back to the 1940s, when Hermann Weyl at the Institute for Advanced Study in Princeton, New Jersey, and others, discovered that all elementary particles that have zero mass (including neutrinos, despite their having an extremely small mass) strictly segregate into left- and right-handed populations that never intermix.

A few decades later, theorists discovered that the presence of electric and magnetic fields ruins the segregation of these particles, causing the two populations to transform into each other with observable consequences.

This field-induced mixing, which became known as the chiral anomaly, was first encountered in 1969 in work by Stephen Adler of the Institute for Advanced Study, John Bell of the European Organization for Nuclear Research (CERN) and Roman Jackiw of the Massachusetts Institute of Technology, who successfully explained why certain elementary particles, called neutral pions, decay much faster -- by a factor of 300 million -- than their charged cousins. Over the decades the anomaly has played an important if perplexing role in the grand quest to unify the four fundamental forces of nature.

The prediction that the chiral anomaly could also be observed in crystals came in 1983 from physicists Holger Bech Nielsen of the University of Copenhagen and Masao Ninomiya of the Okayama Institute for Quantum Physics. They suggested that it may be possible to detect the anomaly in a laboratory setting, which would enable researchers to apply intense magnetic fields to test predictions under conditions that would be impossible in high-energy particle colliders.

Recent progress in the development of certain kinds of crystals known as "topological" materials has paved the way toward realizing this prediction, Ong said. In the crystal of Na3Bi, which is a topological material known as a Dirac semi-metal, electrons occupy quantum states which mimic massless particles that segregate into left- and right-handed populations.

To see if they could observe the anomaly in Na3Bi, Jun Xiong, a graduate student in physics advised by Ong, cooled a crystal of Na3Bi grown by Satya Kushwaha, a postdoctoral research associate in chemistry who works with Cava, to cryogenic temperatures in the presence of a strong magnetic field that can be rotated relative to the direction of the applied electrical current in the crystal. When the magnetic field was aligned parallel to the current, the two chiral populations intermixed to produce a novel increase in conductivity, which the researchers call the "axial current plume." The experiment confirmed the existence of the chiral anomaly in a crystal.

"One of the key findings in the experiment is that the intermixing leads to a charge current, or axial current, that resists depletion caused by scattering from impurities," Ong said. "Understanding how to minimize the scattering of current-carrying electrons by impurities -- which causes electronic devices to lose energy as heat -- is important for realizing future electronic devices that are more energy-efficient. While these are early days, experiments on the long-lived axial current may help us to develop low-dissipation devices."

Media Contact

Catherine Zandonella
czandone@princeton.edu
609-258-0541

 @Princeton

http://www.princeton.edu 

Catherine Zandonella | EurekAlert!

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>