Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let the good tubes roll

19.01.2018

Inspired by biology, a PNNL-led team of scientists has created new tiny tubes that could help with water purification and tissue engineering studies

Materials scientists, led by a team at the Department of Energy's Pacific Northwest National Laboratory, designed a tiny tube that rolls up and zips closed.


Scientists at PNNL have created a new family of nanotubes that are composed of peptide-like molecules called peptoids. These nanotubes start out as small droplets that come together to form a cell-membrane-like sheet. Then the sheet folds at one end and zips closed into a tube.

Credit: PNNL

These hollow nanotubes are thousands of times smaller than a strand of human hair and could help with water filtration, tissue engineering and many other applications.

The tubes were inspired by protein structures called microtubules that reside in cells, according to PNNL's Chun-Long Chen.

"The structure of the cell is so beautiful," said Chen, a materials chemist who conceived of and directed the project. "We wanted to create a synthetic system that mimics the microtubule structure and is stable enough for a variety of technical applications."

Chen, his PNNL colleagues and their collaborators published their findings this week in Nature Communications.

Mimicking microtubules

Microtubules are tiny hollow tubes that help keep DNA organized during cell division and form highways for shuttling contents around in the cell.

These cellular roads are composed of long chains of proteins that come together into a rigid, but hollow, tube. Microtubules have a uniform but dynamic structure, and they inspire scientists like Chen.

Chen's group hopes to use tiny hollow tubes like microtubules to create a robust water filtration system that would catch salt or other molecules inside and let pure water escape out the other end. In addition, they want to monitor how stem cells adapt to different environments by studying how the cells change while they grow on these tubes.

But the researchers can't use microtubules themselves for these projects. Microtubules may be rigid and responsive, but they're also susceptible to temperature changes and microbes.

For example, "if we want to use microtubules for water filtration, you don't want to have a filter that can be eaten by bacteria," said Chen.

So the team set about making a synthetic version of microtubules using protein-like molecules called peptoids. Like proteins, peptoids are composed of a repeating pattern of building blocks with slight variations, but peptoids are more stable.

These new nanotubes form in a unique way. First, small peptoid particles come together to form a sheet. Then the sheet closes at one end and rolls into a seamless tube.

Nano toolkit

To characterize the nanotubes, the scientists used a variety of techniques, including some at the Advanced Light Source and the Molecular Foundry, two DOE Office of Science User Facilities at Lawrence Berkeley National Laboratory.

Chen and his team discovered that these nanotubes are highly tailorable. The group could control a tube's size, diameter, thickness and stiffness by adjusting the tube composition or changing the acidity of the solution.

To test the rigidity of the nanotubes, Chen's team put pressure on individual nanotubes and measured how they changed shape. The tubes have a rigidity that falls between biological tissue and harder substances like glass and mica, which, said Chen, is great for the types of experiments he hopes to do.

But Chen doesn't want to stop there. For him, the goal is to create something that mimics nature in structure and function.

"Nature has offered us all kinds of beautiful examples," he said. "Fish can take in water from the sea without having to worry about high salt conditions. If we could mimic this behavior by building artificial cell membranes containing these nanotubes, we could solve some of the big problems facing our world today."

###

This work was supported by the Department of Energy Office of Science, PNNL and the National Science Foundation of China.

Reference: Haibao Jin, Yan-Huai Ding, Mingming Wang, Yang Song, Zhihao Liao, Christina L. Newcomb, Xuepeng Wu, Xian-Qiong Tang, Zheng Li, Yuehe Lin, Feng Yan, Tengyue Jian, Peng Mu, Chun-Long Chen. Designable and Dynamic Single-Walled Stiff Nanotubes Assembled from Sequence-Defined Peptoids, Nature Communications, Jan. 18, 2018, DOI: 10.1038/s41467-017-02059-1.

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed and operated by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, Instagram, LinkedIn and Twitter.

Media Contact

Susan Bauer
susan.bauer@pnnl.gov
509-372-6083

 @PNNLab

http://www.pnnl.gov/news

Susan Bauer | EurekAlert!

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>