Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Let's roll: Material for polymer solar cells may lend itself to large-area processing

15.08.2016

'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom

For all the promise they have shown in the lab, polymer solar cells still need to "get on a roll" like the ones employed in printing newspapers so that large sheets of acceptably efficient photovoltaic devices can be manufactured continuously and economically. Polymer solar cells offer advantages over their traditional silicon-based counterparts in numerous ways, including lower cost, potentially smaller carbon footprint and a greater variety of uses.


A demonstration solar park based on polymer solar cells at the Technical University of Denmark in Roskilde, Denmark.

Credit: DTU Energy

New research results reported by an international team led by the National Institute of Standards and Technology (NIST) indicate that the "sweet spot" for mass-producing polymer solar cells--a tantalizing prospect for decades--may be far larger than dictated by the conventional wisdom. In experiments using a mock-up of a high-volume, roll-to-roll processing method, the researchers produced polymer-based solar cells with a "power conversion efficiency" of better than 9.5 percent, just shy of the minimum commercial target of 10 percent.

That's almost as good as the small-batch devices made in the lab with spin-coating, a method that produces high-quality films in the laboratory but is commercially impractical since it wastes up to 90 percent of the initial ink.

Somewhat surprising to the researchers, their mass-produced versions exhibited molecular packing and texture that only slightly resembled that of lab-made varieties, which at their best convert about 11 percent of incident sunlight into electrical energy.

"The 'rule of thumb' has been that high-volume polymer solar cells should look just like those made in the lab in terms of structure, organization and shape at the nanometer scale," said Lee Richter, a NIST physicist who works on functional polymers. "Our experiments indicate that the requirements are much more flexible than assumed, allowing for greater structural variability without significantly sacrificing conversion efficiency."

"Efficient roll-to-roll fabrication is key to achieving the low-cost, high-volume production that would enable photovoltaics to scale to a significant fraction of global energy production," explained He Yan, a collaborator from Hong Kong University of Science and Technology.

The team experimented with a coating material composed of a fluorinated polymer and a fullerene (also known as a "buckyball"). Going by the technical name PffBT4T-2OD, the polymer is attractive for scaled production--achieving a reported power conversion efficiency of more than 11 percent. Importantly, it can be applied in relatively thick layers--conducive to roll-to-roll processing.

However, the top-performing solar cells were produced with the spin-coating method, a small-batch process. In spin coating, the fluid is dispensed onto the center of a disk or other substrate, which rotates to spread the material until the desired coating thickness is achieved. Besides generating lots of waste, the process is piecemeal--rather than continuous--and substrate size is limited.

So the research team opted to test commercially relevant coating methods, especially since PffBT4T-2OD can be applied in relatively thick layers of 250 nanometers and more, or roughly the size of a large virus. They started with blade-coating--akin to holding a knife edge at a fraction of a hair's breadth above a treated glass substrate as it slides by, painting the PffBT4T-2OD onto the substrate.

A series of X-ray-based measurements revealed that the temperature at which the PffBT4T-2OD was applied and dried significantly influenced the resultant coating's material structure--especially the orientation, spacing and distribution of the crystals that formed.

The substrates blade-coated at 90 degrees Celsius (194 degrees F) were the highest performing, achieving power conversion efficiencies that topped 9.5 percent. Surprisingly, at the nanometer level, the end products differed significantly from the spin-coated "champion" devices made in the lab. Detailed real-time measurements during both blade-coating and spin-coating revealed the different structures arose from the rapid cooling during spin-coating versus the constant temperature during blade-coating.

"Real-time measurements were critical to developing a proper understanding of the film formation kinetics and ultimate optimization," said Aram Amassian, a collaborator from Saudi Arabia's King Abdullah University of Science and Technology.

Encouraged by the results, the team performed preliminary measurements of PffBT4T-2OD coating formed on the surface of a flexible plastic sheet. The coating was applied on NIST's slot-die roll-to-roll coating line, directly mimicking large-scale production. Measurements confirmed that the material structures made with blade-coating and those made with slot-die-coating were nearly identical when processed at the same temperatures.

"It's clear that the type of processing method used influences the shape of the domains and their size distribution in the final coating, but these distinctly different morphologies do not necessarily undermine performance," said Harald Ade, a collaborator from North Carolina State University. "We think these findings provide important clues for designing polymer solar cells optimized for roll-to-roll processing."

###

Article: H.W. Ro, J.M. Downing, S. Engmann, A.A. Herzing, D.M. DeLongchamp, L.J. Richter, S. Mukherjee, H. Ade, M. Abdelsamie, L.K. Jagadamma, A. Amassian, Y. Liu and H. Yan. 2016. Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy & Environmental Science. Published August 2, 2016. DOI: 10.1039/c6ee01623e

Media Contact

Mark Bello
mark.bello@nist.gov
301-975-3776

 @usnistgov

http://www.nist.gov 

Mark Bello | EurekAlert!

Further reports about: NIST coating polymer-based solar cells solar cells

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>