Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Large-scale field-effect transistors based on solution-grown organic single crystals are fabricated


Field-effect transistors (FETs) made of organic single crystals show superior mobility values as organic single crystals have fewer structural defects than their amorphous and polycrystalline counterparts.

However, single-crystal devices are practically difficult to fabricate. For both fundamental studies and technological applications, high-throughput fabrication of single-crystal FETs is highly desired for either examination of device performance statistics or realization of a large array of devices and has attracted the attention of researchers from both academia and industry.

This image shows an experimental procedure to achieve crystal alignment.

Credit: ©Science China Press

In an article published in Science Bulletin, Prof. Hanying Li's research group describe a simple solution processing method where well-aligned single-crystals of organic semiconductors throughout a 1cm × 2cm substrate can be grown from a droplet pinned by a metal needle.

The well-controlled alignment of the crystals originates from the unidirectional receding of the pinned droplet regulated by the capillary force. Because of the crystal alignment in a large area, fabrication of device arrays become possible.

More importantly, this simple method is applicable to a wide range of organic semiconductors and potentially to inorganic materials, with six examples including both p- and n-channel materials demonstrated in this work.

Furthermore, large-scale FET arrays are fabricated and studied, using TIPS-pentacene crystals (a well-known p-channel material) as an example.

Among the 330 devices randomly selected from 2 substrates, an average hole mobility (μ) of 3.44 ± 1.21 cm2V-1s-1 with the maximum value of 6.46 cm2V-1s-1, on-to-off current ratios (I on/I off) > 10 5, and threshold voltages (VT) between -20 to -58 V were achieved.

Among the 330 devices, 328 FETs showed the mobility above 1 cm2V-1s-1, the other two were 0.94 cm2V-1s-1 and 0.92 cm2V-1s-1 respectively. The achieved FET performance is among the best reported ones. As such, this work provides a highly efficient, yet simple approach to evaluate the charge transport properties of organic semiconductors through examining the performance statistics of single-crystal devices.


See the article:

Shuang Liu, Jiake Wu, Congcheng Fan, Guobiao Xue, Hongzheng Chen, Huolin L. Xin and Hanying Li, "Large-scale fabrication of field-effect transistors based on solution-grown organic single crystals," Science Bulletin, 2015, 60(12): 1122-1127. doi: 10.1007/s11434-015-0817-9.

Hanying Li | EurekAlert!

More articles from Materials Sciences:

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

nachricht Scientists develop a semiconductor nanocomposite material that moves in response to light
18.10.2016 | Worcester Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>