Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landscapes give latitude to 2-D material designers

10.08.2017

Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects

Rice University researchers have learned to manipulate two-dimensional materials to design in defects that enhance the materials' properties.


Researchers at Rice University and Oak Ridge National Laboratory determined that two-dimensional materials grown onto a cone allow control over where defects called grain boundaries appear. These defects can be used to enhance the materials' electronic, mechanical, catalytic and optical properties.

Credit: Yakobson Research Group/Rice University

The Rice lab of theoretical physicist Boris Yakobson and colleagues at Oak Ridge National Laboratory are combining theory and experimentation to prove it's possible to give 2-D materials specific defects, especially atomic-scale seams called grain boundaries. These boundaries may be used to enhance the materials' electronic, magnetic, mechanical, catalytic and optical properties.

The key is introducing curvature to the landscape that constrains the way defects propagate. The researchers call this "tilt grain boundary topology," and they achieve it by growing their materials onto a topographically curved substrate -- in this case, a cone. The angle of the cone dictates if, what kind and where the boundaries appear.

The research is the subject of a paper in the American Chemical Society journal ACS Nano.

Grain boundaries are the borders that appear in a material where edges meet in a mismatch. These boundaries are a series of defects; for example, when two sheets of hexagonal graphene meet at an angle, the carbon atoms compensate for it by forming nonhexagonal (five- or seven-member) rings.

Yakobson and his team have already demonstrated that these boundaries can be electronically significant. They can, for instance, turn perfectly conducting graphene into a semiconductor. In some cases, the boundary itself may be a conductive subnanoscale wire or take on magnetic properties.

But until now researchers had little control over where those boundaries would appear when growing graphene, molybdenum disulfide or other 2-D materials by chemical vapor deposition.

The theory developed at Rice showed growing 2-D material on a cone would force the boundaries to appear in certain places. The width of the cone controlled the placement and, more importantly, the tilt angle, a crucial parameter in tuning the materials' electronic and magnetic properties, Yakobson said.

Experimental collaborators from Oak Ridge led by co-author David Geohegan provided evidence backing key aspects of the theory. They achieved this by growing tungsten disulfide onto small cones similar to those in Rice's computer models. The boundaries that appeared in the real materials matched those predicted by theory.

"The nonplanar shape of the substrate forces the 2-D crystal to grow in a curved 'non-Euclidian' space," Yakobson said. "This strains the crystal, which occasionally yields by giving a way to the seams, or grain boundaries. It's no different from the way a tailor would add a seam to a suit or a dress to fit a curvy customer."

Modeling cones of different widths also revealed a "magic cone" of 38.9 degrees upon which growing a 2-D material would leave no grain boundary at all.

The Rice team extended its theory to see what would happen if the cones sat on a plane. They predicted how grain boundaries would form over the entire surface, and again, Oak Ridge experiments confirmed their results.

Yakobson said both the Rice and Oak Ridge teams were working on aspects of the research independently. "It was slow going until we met at a conference in Florida a couple of years back and realized that we should continue together," he said. "It was certainly gratifying to see how experiments confirmed the models, while sometimes offering important surprises. Now we need to do the additional work to comprehend them as well."

###

Rice graduate students Henry Yu and Nitant Gupta are co-lead authors of the paper. Co-authors are former Rice postdoctoral researcher Zhili Hu, now at Nanjing University of Aeronautics and Astronautics, and researchers Kai Wang, Bernadeta Srijanto and Kai Xiao of Oak Ridge National Laboratory. Geohegan is the functional hybrid nanomaterials group leader at Oak Ridge's Center for Nanophase Materials Sciences. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.

The U.S. Department of Energy Basic Energy Sciences and its Center for Nanophase Materials Sciences and the Office of Naval Research supported the research.

Computer resources were provided by the Night Owls Time-Sharing Service and its National Science Foundation-supported DAVinCI supercomputer, both administered by Rice's Center for Research Computing; the resources were procured in partnership with Rice's Ken Kennedy Institute for Information Technology.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acsnano.7b03681

This news release can be found online at http://news.rice.edu/2017/08/09/landscapes-give-latitude-to-2-d-material-designers/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Yakobson Research Group: http://biygroup.blogs.rice.edu

David Geohegan bio: https://www.ornl.gov/staff-profile/david-b-geohegan

Rice University Materials Science and NanoEngineering: https://msne.rice.edu

Images for download:

http://news.rice.edu/files/2017/08/0814_TILT-1-web-2cn81mr.jpg

Researchers at Rice University and Oak Ridge National Laboratory determined that two-dimensional materials grown onto a cone allow control over where defects called grain boundaries appear. These defects can be used to enhance the materials' electronic, mechanical, catalytic and optical properties. (Credit: Yakobson Research Group/Rice University)

http://news.rice.edu/files/2017/08/0814_TILT-2-web-2iw5qbv.jpg

Two-dimensional materials grown onto a cone allow control over where defects called grain boundaries appear. These defects can be used to enhance the materials' useful properties. (Credit: Yakobson Research Group/Rice University)

http://news.rice.edu/files/2017/08/0814_TILT-3-web-2m20nsf.jpg

A theoretical model at left, created at Rice University, shows a triangular flake of tungsten disulfide grown around a cone that forces the creation of a grain boundary at a specific angle. The Rice researchers showed the width of the cone could be used to determine the placement of the boundary, and scientists at Oak Ridge National Laboratory proved it when they made the matching material seen in the electron microscope image at right. (Credit: Rice University/Oak Ridge National Laboratory)

http://news.rice.edu/files/2017/08/0814_TILT-4-web-1wfcdd7.jpg

Researchers at Rice University and Oak Ridge National Laboratory predict and confirmed that two-dimensional materials grown onto a cone allows control over where defects called grain boundaries appear. At left, a Rice model predicts how a grain boundary would form on a steep cone and extend onto a shallow cone. Scientists at Oak Ridge confirmed the prediction when they created the material seen in an electron microscope image at right. (Credit: Rice University/Oak Ridge National Laboratory)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

Jeff Falk
jfalk@rice.edu
713-348-6775

 @RiceUNews

http://news.rice.edu 

Jeff Falk | EurekAlert!

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>