Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Switch in the Immune System Regulated by Splicing

12.04.2016

The protein MALT1 is an important switch in immune cells and affects their activity. Researchers at Helmholtz Zentrum München report in ‘Nature Communications’ that this activation is not always equally strong. Through alternative splicing, two variants of the protein may arise which have a stronger or weaker effect on the immune system. Understanding this process is important for the pharmacological use of MALT1.

The protein MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) controls the activation of lymphocytes and thus the immune response following bacterial or viral infections.


Isabel Meininger and Prof. Dr. Daniel Krappmann

Source: Helmholtz Zentrum München

For this purpose, the protease cleaves other proteins in the cell and is considered a potential target for the treatment of excessive immune responses as observed in autoimmune diseases (e.g. multiple sclerosis) or distinct malignant lymphomas.

To prevent an overshooting MALT1 activity, a team at the Research Unit Cellular Signal Integration (AZS) at Helmholtz Zentrum München is investigating which steps in this signaling chain are feasible for a pharmacological targeting. In the current study, the team led by Prof. Dr. Daniel Krappmann, head of the AZS Research Unit, focused on the two variants MALT1A and MALT1B, which arise through alternative splicing*.

Stronger activation of T cells

“To our surprise, we showed that MALT1 is regulated by posttranscriptional splicing,” said first author Isabel Meininger, a doctoral student at Helmholtz Zentrum München. “Depending on which MALT1 variant is expressed, the immune system activated is more or less,” she added.

Specifically, the scientists observed that MALT1A resulted in a stronger stimulation of T cells than MALT1B. According to the study, a molecule called hnRNP U (heterogeneous nuclear ribonucleoprotein U) regulates which of the two isoforms is preferably expressed. If it is present in only small amounts, higher levels of MALT1A are expressed, resulting in stronger activation of the T cells. However, if the quantity of hnRNP U is increased, higher levels of MALT1B are expressed and the response of the T cells is weaker.

“Our findings contribute to a better understanding of the function of MALT1 and enable us to better assess the potential impact of a pharmacological effect on this promising drug candidate,” said Krappmann. In previous studies he and his team already identified first pharmacological substances with which the function of MALT1 can be specifically altered. In future studies, the researchers want to confirm in a preclinical model the effects of MALT1 splicing on the immune system and the development of diseases.

Further Information

Background:
* Alternative splicing refers to a process in which a copy of a gene, the pre-mRNA, is spliced differently. Thus, several alternative RNA sequences can be generated that as a consequence lead to different proteins. In the case of MALT1 the variants A and B differ only through the presence of a short sequence that encodes eleven amino acids. If this region is missing, as in the case of MALT1B, this leads to an impaired ability to stimulate T cells.

Original Publication:
Meininger, I. et al. (2016). Alternative splicing of MALT1 controls signaling and activation of CD4+ T cells, Nature Communications, DOI: 10.1038/NCOMMS11292

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches to the prevention and therapy of major common diseases such as diabetes and lung disease. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. The Helmholtz Zentrum München is a partner in the German Center for Diabetes Research. http://www.helmholtz-muenchen.de/en/index.html

The Research Unit Cellular Signal Integration (AZS) at the Institute of Molecular Toxicology and Pharmacology conducts research for a better understanding of cellular communication. In doing so, it focuses on the interaction of protein complexes and the effects of posttranslational modifications. The aim of this research is to elucidate the faulty regulation of the signaling chains in the immune system, which may contribute to the development of infectious diseases, lymphoma and autoimmune diseases, and to modulate these processes pharmacologically. http://www.helmholtz-muenchen.de/en/azs/index.html

Scientific contact at Helmholtz Zentrum München
Prof. Dr. Daniel Krappmann, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit Cellular Signal Integration, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: +49 89 3187-3461, E-mail: daniel.krappmann@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Cellular Helmholtz Protein Signal T cells autoimmune diseases diseases immune system

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>