Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Switch in the Immune System Regulated by Splicing

12.04.2016

The protein MALT1 is an important switch in immune cells and affects their activity. Researchers at Helmholtz Zentrum München report in ‘Nature Communications’ that this activation is not always equally strong. Through alternative splicing, two variants of the protein may arise which have a stronger or weaker effect on the immune system. Understanding this process is important for the pharmacological use of MALT1.

The protein MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) controls the activation of lymphocytes and thus the immune response following bacterial or viral infections.


Isabel Meininger and Prof. Dr. Daniel Krappmann

Source: Helmholtz Zentrum München

For this purpose, the protease cleaves other proteins in the cell and is considered a potential target for the treatment of excessive immune responses as observed in autoimmune diseases (e.g. multiple sclerosis) or distinct malignant lymphomas.

To prevent an overshooting MALT1 activity, a team at the Research Unit Cellular Signal Integration (AZS) at Helmholtz Zentrum München is investigating which steps in this signaling chain are feasible for a pharmacological targeting. In the current study, the team led by Prof. Dr. Daniel Krappmann, head of the AZS Research Unit, focused on the two variants MALT1A and MALT1B, which arise through alternative splicing*.

Stronger activation of T cells

“To our surprise, we showed that MALT1 is regulated by posttranscriptional splicing,” said first author Isabel Meininger, a doctoral student at Helmholtz Zentrum München. “Depending on which MALT1 variant is expressed, the immune system activated is more or less,” she added.

Specifically, the scientists observed that MALT1A resulted in a stronger stimulation of T cells than MALT1B. According to the study, a molecule called hnRNP U (heterogeneous nuclear ribonucleoprotein U) regulates which of the two isoforms is preferably expressed. If it is present in only small amounts, higher levels of MALT1A are expressed, resulting in stronger activation of the T cells. However, if the quantity of hnRNP U is increased, higher levels of MALT1B are expressed and the response of the T cells is weaker.

“Our findings contribute to a better understanding of the function of MALT1 and enable us to better assess the potential impact of a pharmacological effect on this promising drug candidate,” said Krappmann. In previous studies he and his team already identified first pharmacological substances with which the function of MALT1 can be specifically altered. In future studies, the researchers want to confirm in a preclinical model the effects of MALT1 splicing on the immune system and the development of diseases.

Further Information

Background:
* Alternative splicing refers to a process in which a copy of a gene, the pre-mRNA, is spliced differently. Thus, several alternative RNA sequences can be generated that as a consequence lead to different proteins. In the case of MALT1 the variants A and B differ only through the presence of a short sequence that encodes eleven amino acids. If this region is missing, as in the case of MALT1B, this leads to an impaired ability to stimulate T cells.

Original Publication:
Meininger, I. et al. (2016). Alternative splicing of MALT1 controls signaling and activation of CD4+ T cells, Nature Communications, DOI: 10.1038/NCOMMS11292

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches to the prevention and therapy of major common diseases such as diabetes and lung disease. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. The Helmholtz Zentrum München is a partner in the German Center for Diabetes Research. http://www.helmholtz-muenchen.de/en/index.html

The Research Unit Cellular Signal Integration (AZS) at the Institute of Molecular Toxicology and Pharmacology conducts research for a better understanding of cellular communication. In doing so, it focuses on the interaction of protein complexes and the effects of posttranslational modifications. The aim of this research is to elucidate the faulty regulation of the signaling chains in the immune system, which may contribute to the development of infectious diseases, lymphoma and autoimmune diseases, and to modulate these processes pharmacologically. http://www.helmholtz-muenchen.de/en/azs/index.html

Scientific contact at Helmholtz Zentrum München
Prof. Dr. Daniel Krappmann, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit Cellular Signal Integration, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: +49 89 3187-3461, E-mail: daniel.krappmann@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Cellular Helmholtz Protein Signal T cells autoimmune diseases diseases immune system

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>