Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent façades generating electricity, heat and algae biomass

22.12.2014

Materials scientists of Jena University (Germany) coordinate new EU-project on intelligent façades

Windows that change their light permeability at the touch of a button, façades, whose color can be changed according to the sunlight, façades and window parts in which transparent photovoltaic modules are integrated or in which microalgae are being bred to provide the house with its own biofuel: This is what the buildings of the future could feature, or at least something similar.


The goals of the new project, that is coordinated by materials scientists of Jena University, are more intelligent façades.

Photo: Jan-Peter Kasper/Univ. Jena

“Many of these ideas are certainly within imagination end even technological feasibility, today, in particular within the field of façades which may adapt to their environment and thus improve the energy efficiency of modern buildings,” states Prof. Dr.-Ing. Lothar Wondraczek from Friedrich Schiller University in Jena (Germany). “But only a fraction of this potential has been tackled so far, as the relevant materials and production processes are still missing,” he further explains.

A new international research effort, coordinated by Jena’s materials scientist Lothar Wondraczek, is aiming to change this. In the project ‘Large-Area Fluidic Windows – LaWin’ the scientists intend to develop functional façades and window modules, together with an integrated production process to achieve an as to yet unmatched readiness to market.

“This requires close collaboration of architects, materials researchers, and civil and construction engineers. That is why we established a broad, interdisciplinary consortium.” All in all, 14 participants take part in the ‘LaWin‘.-project: Apart from the academic partners at Jena University, Weimar University, Beuth University of Applied Sciences, eleven industrial corporations from Germany, Austria, Belgium and the Czech Republic are involved.

Over the coming 3 years, the European Commission supports the project with about 6 Million Euro within the European framework program ‘Horizon 2020’. The partaking industrial partners will be adding another 2.1 Million Euro to that.

In Jena the project is located at the "Center for Energy and Environmental Chemistry" (CEEC). There, Prof. Wondraczek and his team will work on new glass modules for building façades, which consist of two joint glass layers: one layer made from a very thin and high strength cover glass and one layer of structured glass.

“This structured glass contains microfluidic channels through which a functional fluid circulates. As an example, this liquid will make it possible to automatically adjust the incidence of light or to harvest exterior heat which will then be transported to a heat pump,” Wondraczek explains. The scientists will conduct detailed tests of such façade and window modules to optimize the materials and their functional interaction.

Therefore, ‘LaWin‘ takes will take another step forward, i. e., to outside of the laboratory: Based on the results of their laboratory findings, the scientists plan to implement the innovative façades with reference buildings in order to test them under ‘real’ conditions. “The challenge lies in the large size”, Wondraczek points out.

“As of today, there is no production process for such large-sized glass sheet with integrated micro structures. Moreover, the new glass façades have to be able to be integrated into conventional window and façade systems.” They also have to be cost-effective. After all, a third of all greenhouse gas emissions in the EU and 40 percent of the energy consumption are due to the heating, cooling, air conditioning and lighting of buildings. Investments in energy efficient buildings are hence the most important levers to significantly reduce the carbon dioxide emissions and to reach the climate goals.

“This is given by the laws of thermodynamics: To save and to efficiently use energy is always more beneficial than to generate it from whichever source,” the Jena materials scientist stresses. The topical area of ‘energy efficient buildings’ is therefore one of eight strategic key areas in which the European commission‘s Public-Private-Partnership (PPP)-Initiative sees important possibilities for a sustainable reinforcement of the European innovation and industrial leadership in the global competition.

Contact:
Prof. Dr.-Ing. Lothar Wondraczek
Otto Schott Institute of Materials Research
Friedrich Schiller University of Jena
Fraunhoferstr. 6
07743 Jena
Germany
Phone: +049 (0)3641 948504
Email: lothar.wondraczek[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de/en/start.html

Claudia Hilbert | Friedrich-Schiller-Universität Jena

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>