Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent façades generating electricity, heat and algae biomass

22.12.2014

Materials scientists of Jena University (Germany) coordinate new EU-project on intelligent façades

Windows that change their light permeability at the touch of a button, façades, whose color can be changed according to the sunlight, façades and window parts in which transparent photovoltaic modules are integrated or in which microalgae are being bred to provide the house with its own biofuel: This is what the buildings of the future could feature, or at least something similar.


The goals of the new project, that is coordinated by materials scientists of Jena University, are more intelligent façades.

Photo: Jan-Peter Kasper/Univ. Jena

“Many of these ideas are certainly within imagination end even technological feasibility, today, in particular within the field of façades which may adapt to their environment and thus improve the energy efficiency of modern buildings,” states Prof. Dr.-Ing. Lothar Wondraczek from Friedrich Schiller University in Jena (Germany). “But only a fraction of this potential has been tackled so far, as the relevant materials and production processes are still missing,” he further explains.

A new international research effort, coordinated by Jena’s materials scientist Lothar Wondraczek, is aiming to change this. In the project ‘Large-Area Fluidic Windows – LaWin’ the scientists intend to develop functional façades and window modules, together with an integrated production process to achieve an as to yet unmatched readiness to market.

“This requires close collaboration of architects, materials researchers, and civil and construction engineers. That is why we established a broad, interdisciplinary consortium.” All in all, 14 participants take part in the ‘LaWin‘.-project: Apart from the academic partners at Jena University, Weimar University, Beuth University of Applied Sciences, eleven industrial corporations from Germany, Austria, Belgium and the Czech Republic are involved.

Over the coming 3 years, the European Commission supports the project with about 6 Million Euro within the European framework program ‘Horizon 2020’. The partaking industrial partners will be adding another 2.1 Million Euro to that.

In Jena the project is located at the "Center for Energy and Environmental Chemistry" (CEEC). There, Prof. Wondraczek and his team will work on new glass modules for building façades, which consist of two joint glass layers: one layer made from a very thin and high strength cover glass and one layer of structured glass.

“This structured glass contains microfluidic channels through which a functional fluid circulates. As an example, this liquid will make it possible to automatically adjust the incidence of light or to harvest exterior heat which will then be transported to a heat pump,” Wondraczek explains. The scientists will conduct detailed tests of such façade and window modules to optimize the materials and their functional interaction.

Therefore, ‘LaWin‘ takes will take another step forward, i. e., to outside of the laboratory: Based on the results of their laboratory findings, the scientists plan to implement the innovative façades with reference buildings in order to test them under ‘real’ conditions. “The challenge lies in the large size”, Wondraczek points out.

“As of today, there is no production process for such large-sized glass sheet with integrated micro structures. Moreover, the new glass façades have to be able to be integrated into conventional window and façade systems.” They also have to be cost-effective. After all, a third of all greenhouse gas emissions in the EU and 40 percent of the energy consumption are due to the heating, cooling, air conditioning and lighting of buildings. Investments in energy efficient buildings are hence the most important levers to significantly reduce the carbon dioxide emissions and to reach the climate goals.

“This is given by the laws of thermodynamics: To save and to efficiently use energy is always more beneficial than to generate it from whichever source,” the Jena materials scientist stresses. The topical area of ‘energy efficient buildings’ is therefore one of eight strategic key areas in which the European commission‘s Public-Private-Partnership (PPP)-Initiative sees important possibilities for a sustainable reinforcement of the European innovation and industrial leadership in the global competition.

Contact:
Prof. Dr.-Ing. Lothar Wondraczek
Otto Schott Institute of Materials Research
Friedrich Schiller University of Jena
Fraunhoferstr. 6
07743 Jena
Germany
Phone: +049 (0)3641 948504
Email: lothar.wondraczek[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de/en/start.html

Claudia Hilbert | Friedrich-Schiller-Universität Jena

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>