Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Inspired by venus flytrap, researchers develop folding 'snap' geometry


UMass Amherst researchers develop a way to use curved creases to give thin curved shells a fast, programmable snapping motion

Inspired by natural "snapping" systems like Venus flytrap leaves and hummingbird beaks, a team led by physicist Christian Santangelo at the University of Massachusetts Amherst has developed a way to use curved creases to give thin curved shells a fast, programmable snapping motion. The new technique avoids the need for complicated materials and fabrication methods when creating structures with fast dynamics.

Until now, there has not been a general geometric design rule for creating a snap between stable states of arbitrarily curved surfaces. The advance should help materials scientists and engineers who wish to design structures that can rapidly switch shape and properties.

Credit: Beatrice Murch/Wikimedia Image 1 and Image 2 with Creative Commons Attribution-Share Alike 2.0 Generic license.

The advance should help materials scientists and engineers who wish to design structures that can rapidly switch shape and properties, says Santangelo. He and colleagues, including polymer scientist Ryan Hayward, point out that until now, there has not been a general geometric design rule for creating a snap between stable states of arbitrarily curved surfaces.

"A lot of plants and animals take advantage of elasticity to move rapidly, yet we haven't really known how to use this in artificial devices," says Santangelo. "This gives us a way of using geometry to design ultrafast, mechanical switches that can be used, for example, in robots." Details of the new geometry appear in an early online issue of Proceedings of the National Academy of Sciences.

The authors point out, "While the well known rules and mechanisms behind folding a flat surface have been used to create deployable structures and shape transformable materials, folding of curved shells is still not fundamentally understood." Though the simultaneous coupling of bending and stretching that deforms a shell naturally gives items "great stability for engineering applications," they add, it makes folding a curved surface not a trivial task.

Santangelo and colleagues' paper outlines the geometry of folding a creased shell and demonstrates the conditions under which it may fold smoothly. They say the new technique "will find application in designing structures over a wide range of length scales, including self-folding materials, tunable optics and switchable frictional surfaces for microfluidics," such as are used in inkjet printer heads and lab-on-a-chip technology.

The authors explain, "Shape programmable structures have recently used origami to reconfigure using a smooth folding motion, but are hampered by slow speeds and complicated material assembly." They say the fast snapping motion they developed "represents a major step in generating programmable materials with rapid actuation capabilities."

Their geometric design work "lays the foundation for developing non-Euclidean origami, in which multiple folds and vertices combine to create new structures," write Santangelo and colleagues, and the principles and methods "open the door for developing design paradigms independent of length-scale and material system."


Other members of the team at UMass Amherst are Nakul Bende, Arthur Evans, Sarah Innes-Gold and Luis Marin, with physicist Itai Cohen at Cornell University. This work is funded by the National Science Foundation.

Media Contact

Janet Lathrop


Janet Lathrop | EurekAlert!

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>