Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into inner magnetic layers

18.02.2015

Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component-

In doing so, the teams enhanced our understanding of processes that are important for future TMR data storage devices and other spintronic components. Their results have now been published in Nature Communications (DOI: 10.1038/ncomms7306).


The insulating LFO-layer in its normal state is antiferromagnetically ordered (AFM) and has no ferromagnetic domains. Due to the proximity to the ferromagnetic LSMO, ferromagnetic domains develop (white arrows) at the interface, pointing into the opposite direction of the LSMO-layer.

Credit: HZB

Layers of magnetic materials are found in every hard drive and in every read/write head today. These are sandwiches made of complex heterostructures in which the different layers have typical thicknesses of only a few nanometres. An effect of quantum physics called tunnel magnetoresistance (TMR) is critical for their operation. It occurs when two ferromagnetic layers are separated from one another by an insulating layer several plies of atoms thick, like cheese between two slices of bread. As long as the magnetisation in both "slices" is parallel, the electrons can tunnel through the "cheese", i.e. the device resistance is low. However, if the magnetisation changes in one of the layers, the electrons can no longer tunnel through the middle layer, i.e. the resistance is high. In this way, the electrical resistance can be precisely controlled through the influence of a magnetic field on one of the two outer layers, and be associated with the binary values of zero and one used for calculations.

New effect observed

The teams from France, Spain and HZB have now discovered that in such sandwiches combining different transition metal oxides, new interfacial effects can strongly influence the amplitude of the TMR This is what the French team under Manuel Bibes and Agnès Barthelemy of the Unité de Physique, CNRS/Thales, Palaiseau (working in collaboration with the team of Jacobo Santamaria in Madrid) had initially observed in measuring the electron transport characteristics. They were researching a system of two LSMO (La0.7Sr0.3MnO3) layers that were separated by a very thin layer of LFO (LaFeO3). The LSMO layers were ferromagnetic while the LFO insulating layer was anti-ferromagnetic.

New magnetic order at the interface

Measurements using the ALICE chamber and from the XPEEM instrument in beamline UE49 at BESSY II have clearly shown what is happening in the interface between the ferromagnetic layers and the anti-ferromagnetic inner layer. The teams were able to decode how each of the magnetic elements manganese and iron were oriented at the interfaces using the XPEEM instrument. "We saw how new magnetic phases arise at the boundaries that function like spin filters", explained Sergio Valencia, who heads the HZB team. "Put simply: the iron atoms near the interface are influenced by the manganese magnetic moments; they then orient their magnetic moments antiparallel to those of the manganese atoms and thus form ferromagnetic domains. We have thus demonstrated experimentally for the first time that ferromagnetic domains can be induced in non-ferromagnetic barrier layers." The French team carried out subsequent calculations of how these kinds of spin filters effect the tunnel magnetoresistance and could reproduce the experimental data.

"These kinds of complex oxide heterostructures as we investigated here could play an important role in future spintronics", says Valencia. The results that have now been published in Nature Communications explain an important process that has not been taken into account so far, and they therefore help in designing tunnel barriers with the desired properties.

###

To the publication in Nature Communications: "Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping" DOI: 10.1038/ncomms7306

Media Contact

Dr. Sergio Valencia Molina
sergio.valencia@helmholtz-berlin.de
49-308-062-15619

http://www.hmi.de 

Dr. Sergio Valencia Molina | EurekAlert!

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>