Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative reusable operating theatre clothing

12.11.2014

Optimising protective operating theatre clothing in terms of comfort and durability enables significant amounts of waste to be avoided and valuable resources saved. Find out here whether you too could benefit from the improved market potential of reusable protective clothing.

More comfortable, more environmentally friendly


For every patient and day in hospital, about 3.2 kg of textiles that need to be professionally disposed of are generated. Optimising reusable operating theatre clothing can significantly help to reduce waste. © Kzenon/Shutterstock

A current research project sponsored by the German Federation of Industrial Research Associations and running until the start of 2016 is working on developing innovative reusable operating theatre textiles which are more comfortable to wear and at the same time more durable because they can be cleaned in a gentler process.

With this project, the wfk – Cleaning Technology Institute e.V. and the Hohenstein Institute are complying with the requirements of the Closed Cycle and Waste Management Act (KrWG) and also increasing the competitiveness of the German textile industry.

The KrWG, as implemented in the Waste Framework Directive RL 2008/98/EC, has been part of German law since 2012. The reform states that, in order to avoid waste, materials should remain in the production cycle for as long as possible. However, in health care, and especially in hospitals, the trend is in the opposite direction.

In the interests of ease of handling, guaranteed sterility at all times and – apparently – cost considerations, the proportion of disposable operating theatre clothing that is used in hospitals is increasing all the time. The resulting waste amounts to about 3.2 kg of textiles per patient per day which have to be disposed of correctly, equating to an annual mountain of waste of about 1200 kg for every hospital bed.

Medical textiles such as bed covers and operating theatre clothing are classed as licensed medical products and are subject to all kinds of textile technology requirements under the European DIN EN 13795 standard. These include, for example, mechanical resistance, microbiological purity and a barrier effect against fluids. These numerous standards, designed to ensure the safety of the wearer, mean that the thermophysiological wearing comfort of operating theatre clothing, and especially of disposable clothing, is a secondary consideration.

To offset the relatively high procurement cost of reusable protective clothing, it must be able to withstand about 50 to 70 cycles of use and reprocessing. Consequently, the wearing comfort of reusable textiles always suffers – yet comfort is precisely the characteristic for which, in addition to environmental performance, they are superior to disposable textiles.

In the light of this problem, this joint research project is developing innovative reusable operating theatre textiles which offer not only greater comfort but also an extended service life. In the project, the Hohenstein Institute is optimising the materials used for reusable protective textiles to ensure the best possible thermophysiological wearing characteristics.

The research team led by Dr. Bianca-Michaela Wölfling is currently studying the operating theatre clothing that is available on the market with regard to its textile technology and clothing physiology properties. They are looking especially at the interaction between body, climate and clothing, since an imbalance between the production and the transport of body heat not only makes the surgeon and operating theatre team feel less comfortable as they work, but can also impair their alertness and performance. Studies are being carried out using both the Hohenstein Skin Model and volunteers in a climate-controlled chamber, in a range of realistic conditions. Proposals for how operating theatre textiles could be further developed will be produced on the basis of the research results.

At the same time, the wfk is researching cleaning processes which would minimise the thermal and mechanical wear on the protective textiles in order to extend their working life. To make sure that their work is also resource-efficient, the researchers are focusing on pre-activated disinfectant systems and enzymes which are particularly active even at low temperatures.

The reduction in the washing temperature and the mechanical stresses, together with specially developed cleaning and disinfecting routines, have resulted in an innovative cleaning process. Firstly, it enables the protective and thermophysiological textile functions to be preserved better than under the current method. Secondly, it results in an improvement of about 25% in the lifespan of reusable operating theatre textiles.

To sum up, this research partnership is creating better market opportunities for reusable protective clothing in hospitals. It is also ensuring compliance with the KrWG by avoiding waste in the textile medical product sector. The innovative reusable protective textiles offer both improved wearing comfort and a longer service life thanks to resource-efficient cleaning processes. However, in addition to the ecological benefits, the economic benefits of the research project should not be overlooked. Expanding the market for reusable operating theatre textiles increases international competitiveness and so helps to safeguard jobs in the German textile industry. At the same time, hospitals can potentially save about 12.9 million euros as a result of the extended usability of protective textiles.


Weitere Informationen:

http://www.hohenstein.de/en/inline/pressrelease_74945.xhtml?excludeId=74945

Andrea Höra | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>