Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indications of the origin of the Spin Seebeck effect discovered

07.09.2015

Thermally excited magnetic waves enable generation of electricity using insulators

The recovery of waste heat in all kinds of processes poses one of the main challenges of our time to making established processes more energy-efficient and thus more environmentally friendly. The Spin Seebeck effect (SSE) is a novel, only rudimentarily understood effect, which allows for the conversion of a heat flux into electrical energy, even in electrically non-conducting materials.

A team of physicists at Johannes Gutenberg University Mainz (JGU), the University of Konstanz, the University of Kaiserslautern, and the Massachusetts Institute of Technology (MIT) have now succeeded in identifying the origin of the Spin Seebeck effect. By the specific investigation of the material- and temperature-dependence of the effect, the German and American researchers were able to show that it exhibits a characteristic length scale attributable to its magnetic origin.

This finding now allows for the advancement of this long-time controversial effect in terms of first applications. The resulting research paper was published in the scientific journal Physical Review Letters, with a fellow of the JGU-based Graduate School of Excellence "Materials Science in Mainz" (MAINZ) as first author.

The Spin Seebeck effect represents a so-called spin-thermoelectric effect, which enables the conversion of thermal energy into electrical energy. Contrary to conventional thermoelectric effects it also enables the recovery of heat energy in magnetic insulators in combination with a thin metallic layer.

Owing to this characteristic, it was assumed that the effect originates from thermally excited magnetic waves. The currently employed method of measurement, which makes use of a second metallic layer converting these magnetic waves into a measurable electrical signal, has so far not been able to allow for a distinct assignment of experimentally detected signals.

By measuring the effect for different material thicknesses in the range of a few nanometers up to several micrometers as well as for different temperatures, the scientists have found characteristic behavior. In thin films the signal amplitude increases with increasing material thickness and eventually saturates after exceeding a sufficient thickness.

In combination with the detected enhancement of this critical thickness at low temperatures, the agreement with the theoretical model of thermally excited magnetic waves developed at Konstanz could be demonstrated. With these results, the researchers were able for the first time to reveal a direct relation between the assumed thermally excited magnetic waves and the effect.

"This result provides us with an important building block of the puzzle of the comprehension of this new, complex effect, unambiguously demonstrating its existence," said Andreas Kehlberger, Ph.D. student at Johannes Gutenberg University Mainz and first author of the publication.

"I am very pleased that this exciting result emerged in a cooperation of a doctoral candidate out of my group at the Graduate School of Excellence 'Materials Science in Mainz' together with co-workers from Kaiserslautern and our colleagues from Konstanz, with whom we collaborate within the Priority Program 'Spin Caloric Transport' funded by the German Research Foundation (DFG)," emphasized Professor Mathias Kläui, director of the MAINZ Graduate School of Excellence based at Mainz University.

"It shows that complex research is only possible in teams, for instance with funding by the German Federal Ministry of Education and Research (BMBF) through the Mainz-MIT Seed Fund."

The MAINZ Graduate School of Excellence was originally approved as part of the Federal and State Excellence Initiative in 2007 and received a five-year funding extension in the second round in 2012 – a tremendous boost for the Mainz-based materials scientists and for the sponsorship of young researchers at JGU.

The MAINZ Graduate School consists of work groups at Johannes Gutenberg University Mainz, the University of Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz. One of its focal research areas is spintronics, where cooperation with leading international partners plays an important role.

Publication:
Kehlberger, A. et al.
Length Scale of the Spin Seebeck Effect
Physical Review Letters, 28 August 2015
DOI: 10.1103/PhysRevLett.115.096602
http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.115.096602

Further information:
Professor Mathias Kläui
Condensed Matter Theory Group
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/
http://www.mainz.uni-mainz.de/ (MAINZ Graduate School of Excellence)

Weitere Informationen:

http://www.uni-mainz.de/presse/19572_ENG_HTML.php - press release
http://www.iph.uni-mainz.de/index_ENG.php - Institute of Physics at JGU
http://www.klaeui-lab.physik.uni-mainz.de/index.php - Kläui Lab at JGU
http://www.mainz.uni-mainz.de/ - MAINZ Graduate School of Excellence

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>