Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved hygiene protection for wool and other textiles containing wool

02.12.2014

Scientists develop wash-resistant antimicrobial treatment for protein fibres

As part of an IGF research project (AiF No. 17150N), scientists at the Hohenstein Institute in Bönnigheim and the Leibnitz Institute for Interactive Materials (DWI) in Aachen have developed an antimicrobial treatment for wool and other textiles containing wool.


Woollen test fabric treated with silver colloid and SA/TSA complex: pickled(left), untreated (middle), felt-free (right). ©Hohenstein Institute

Many of the antimicrobial treatment substances available on the market today are very effective on cotton, polyester, polyamide and those kinds of mixtures of fibres. By contrast, antimicrobial substances are often not effective at all, or only to a very limited extent, on wool and mixed fibres containing wool.

And yet an antimicrobial protective treatment would be particularly desirable here, because textiles containing wool are generally washed less frequently than textiles made from other fibres, due to the felting tendency of woollen fibres. Especially in the outdoor and sports sectors, wool is currently experiencing a real renaissance, so Mihaela Szegedi, Project Leader at the Hohenstein Institute, sees that as a particularly attractive area of application for this innovative textile finish:

"By combining the use of different antimicrobial substances and technologies, we have achieved a really wide range of effectiveness. This will be especially of interest to manufacturers of high-quality functional textiles containing wool. However, we also see great potential for classic business suits or ladies' suits made of wool or mixed fabrics containing wool, as well as domestic and furnishing textiles."

To find the best formulation, the researchers studied the combined use of ionic biopolymers, cationic polyelectrolytes, materials like silver and zinc and technologies such as "layer-by-layer" coating. The two research institutions pursued two different approaches in parallel. At the Hohenstein Institute, researchers concentrated on producing a colloidal dispersion of mixed substances (a colloidal complex) in an aqueous dispersion medium.

This is what a suspension is called in which the antimicrobial particles (1nm < size > 1μm) consist of two substances: the ionic biopolymer alginate (SA) and a type of silane quat (the cationic tetraoctadecyl silicon ammonium compound (TSA)). The experts at the Hohenstein Institute worked out the best ratio for the concentration of the two components, SA:TSA, and how to find the best way of applying and fixing ultra-thin layers to textile substrates.

The DWI developed a hydrogel coating made of polyamines and silver colloids and studied the effectiveness of the silver-release layers that were produced in situ in the treatment of pure woollen fabric and in fibre mixes.

Following a two-stage gel cross-linking reaction to produce the colloidal complex (Figures 1a and 1b) from different SA:TSA % weight ratios, the antimicrobial effectiveness of the SA/TSA colloidal complexes was studied. The interaction with the fibre substrates was tested by measuring zeta potential and the pre-prototype was optimised to improve wash permanence.

By using application techniques such as high-temperature exhaust and cold-pad-batch processes, followed by drying/fixing, alternating layers of the polyamine hydrogel, the silver colloids and the polyelectrolyte layers (SA, TSA) were applied and the range of effectiveness was evaluated at both research centres using different assessment matrices.

The tests showed that by combining two active components (silver ions and Si-quats) the growth of microorganisms (bacteria and fungi) on wool and on wool and polyester blends could be greatly reduced. The application of silver-release layers (Ag/polyamine), polyelectrolyte (SA) and Si-quat layers (TSA) resulted in a finish that had a synergistic effect.

The disadvantages of a combined treatment based on silver-release layers and alternating polyelectrolyte layers are discolouring and limited wash permanence.

In the research project, a treatment based on colloidal complexes was developed for the first time specifically for wool and WO and PET fibre blends. By applying colloidal layers of the SA/TSA complex (in a 1:2 ratio), together with a colloidal zinc-pyrithione formulation over the sol-gel coating, a strong antimicrobial effect was achieved which lasted even after 25 wash cycles (Figure 3).

Here, too, in addition to the wash permanence, a wider spectrum of effectiveness against bacteria and fungi was noted as a result of combining the two active components. It was found that the effectiveness against Gram-positive and Gram-negative bioindicators can be increased by a higher proportion of TSA. Analysis by dynamic light scattering (DLS) and ATR-IR spectroscopy indicates that the interaction of the anionic polyelectrolyte SA with the TSA silane-quat components leads to the formation of colloidal structures (micelles) or silesquioxane oligomers as a result of electrostatic interactions.

Combining the use of the aqueous SA/TSA complex and colloidal silver in an exhaust process, or of commercial zinc-based colloids in a Foulard process, leads to a wide range of effectiveness and excellent hygiene protection for products containing wool. This means that products based on animal protein fibres can be protected against the destructive effect of fungi, algae and bacteria. Woollen textiles that are frequently exposed to moisture can also be protected by this treatment from material damage such as mould or rotting.

This kind of synergistic treatment for textiles with a high woollen fibre content can be of great benefit to textile manufacturers (domestic textiles, upholstery materials), insulation producers, hosiery manufacturers and other fabric producers. Companies in the technical textile sector, whose product range includes woollen fibre blends (car seats), will also be able to benefit from the advantages of antimicrobial protection. The specific formulations that are used are already licensed under the EU Biocidal Products Regulation and can therefore be used as a combined treatment (based on aqueous colloidal dispersions) by textile finishing companies.

Andrea Höra | Hohenstein Institute
Further information:
http://www.hohenstein.de/en/inline/pressrelease_84480.xhtml

Further reports about: Hohenstein TSA antimicrobial bacteria coating fungi research project substances textile textiles

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>