Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ideal nanocrystal produced from bulk plastics

28.08.2013
Polyethylene is an inexpensive commodity plastic found in many household objects.

Now, a consortium of researchers from Constance, Bayreuth, and Berlin has successfully used this plastic to synthesize the ideal polymer nanocrystal. The prerequisite was a new type of catalyst produced by Constance University researchers as well as a combination of unique analytic tools like those found at the Helmholtz Zentrum Berlin (HZB).


Polymer chain incorporation during formation of ideal PE-nanocrystals by catalytic insertion polymerization with a water-soluble Ni(II) catalyst. The amorphous layers covering both platelets act as the wheels of a pulley just changing the direction of the chains. A moderate raise of the temperature induces sufficient mobility that allows the chains to move within the crystal.

The crystalline nanostructure, which gives the polymer its new properties, could prove of interest to production of new kinds of coatings. The scientists’ findings are being published in the Journal of the American Chemical Society’s current issue (DOI: 10.1021/ja4052334).

Bringing materials with a disordered (amorphous) molecular structure into a crystalline form is a common endeavor pursued by chemists and material scientists alike. Often, it is only the crystalline structure which gives a material its desired properties. Therefore, basic science researchers have been interested in trying to identify physical principles that underlie the transition from a structure’s amorphous to its crystalline phase.

The most effective analytic tool that is needed for this is really a combination of various methods that are nowhere as concentrated as they are in Berlin. For the last three years, the HZB and Humboldt University Berlin have been running their Joint Lab for Structural Research. For Humboldt University, the lab was a key factor in their excellence initiative concept.

High polymer compounds like polyethylene, which exist as long molecular chains, are typically partly crystalline, meaning they consist of lamellar-like polyethylene crystals that are coated by a layer of amorphous polyethylene. These amorphous phases are characterized by a series of imperfections like knots. However, within an “ideal” nanocrystal, the amorphous regions act like deflection pulleys that change the direction of chains within the crystal by 180 degrees (see image).

Synthesis of such an ideal crystal has now been accomplished with the help of a new water-soluble catalyst, which allows for polymerization of ethylene in the aqueous phase. In the process, newly developing parts of the molecular chain are immediately incorporated into the growing crystal so that imperfections like entanglements are not allowed to form within the amorphous regions. The researchers gleaned these insights using X-ray diffraction methods and cryogenic transmission electron microscopy (TEM).

The nanocrystal suspension was produced by Prof. Stefan Mecking’s group at Constance University. For the cryo-TEM, HZB scientist Prof. Matthias Ballauff and his team produced a thin film of an aqueous polyethylene nanocrystal suspension and shock-froze it using cryogenically liquefied ethane. This resulted in formation of a glass-like solidified water modification, and the polyethylene nanocrystals enclosed within it can be analyzed using an electron microscope. The suspensions were also subjected to small-angle X-ray scattering (SAXS).

At a resolution of approximately one nanometer, the cryo TEM is the perfect tool for studying the tiniest structures within microemulsions and colloidal solutions. Along with X-ray diffraction experiments, this method has helped document the presence of perfect polymer nanocrystals. Says Matthias Ballauff: “This work shows that by combining microscopy and scattering, even complex systems can be analyzed with a degree of precision that is impossible using either method alone.”

Original article in Journal of the American Chemical Society

Dr. Ina Helms | Helmholtz-Zentrum
Further information:
http://www.helmholtz-berlin.de
http://www.helmholtz-berlin.de/pubbin/news_seite?nid=13779&sprache=en
http://pubs.acs.org/doi/full/10.1021/ja4052334

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>