Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Spiders Spin Silk

06.08.2014

Spider silk is an impressive material: Light weight and stretchy yet stronger than steel. Silk proteins, called spidroins, rapidly convert from a soluble form to solid fibers at ambient temperatures and with water as solvent. How the spiders regulate this process is to a large extent unknown.

Now, Anna Rising and Jan Johansson at the Swedish University of Agricultural Sciences (SLU) and Karolinska Institutet show how the silk formation process is regulated. The work was done in collaboration with colleagues in Latvia, China and USA.

Spidroins are big proteins of up to 3,500 amino acids that contain mostly repetitive sequences. The non-repetitive N- and C-terminal domains at opposite ends are thought to regulate conversion to silk. These terminal domains are unique to spider silk and are highly conserved among spiders.

Spidroins have a helical and unordered structure when stored as soluble proteins in silk glands, but when converted to silk they contain β-sheets that confer mechanical stability. We know that there is a pH gradient across the spider silk gland, which narrows from a tail to a sac to a slender duct, and that silk forms at a precise site in the duct. But further details of spider silk production have been elusive. 

By using ion-selective microelectrodes to measure the pH of the glands we could show that the pH fall from 7.6 to 5.7 between the beginning of the tail and half-way down the duct. This pH gradient is much steeper than previously thought.

The microelectrodes also showed that bicarbonate ions and carbon dioxide pressure simultaneously rise along the gland. Taken together, these patterns suggested that the pH gradient is due to carbonic anhydrase, an enzyme that converts carbon dioxide and water to bicarbonate and hydrogen ions. We used a histological method, developed at SLU, to identify active carbonic anhydrase in the distal part of the gland. Carbonic anhydrase is responsible for generating the pH gradient since an inhibitor called methazolamide collapsed the pH gradient.

We also found that pH had opposite effects on the two domains' stability, which was a surprise given that the domains had been suggested to have a similar impact on silk formation. The N-terminal dimerized at pH 6 (i.e. in the beginning of the duct) and became increasingly stable as the pH dropped along the duct.

In contrast, the C-terminal domain destabilized as the pH dropped, gradually unfolding until it formed the β-sheets characteristic of silk at pH 5.5. These findings show that both terminals undergo structural changes at the pH found in the beginning of the duct. Importantly, this is also where carbonic anhydrase activity is concentrated.

These findings led us to propose a new "lock and trigger" model for spider silk formation. Gradual dimerization of the N-terminal domains lock spidroins into multimers, while the β-sheet fibrils at the C-terminals could serve as nuclei that trigger rapid polymerization of spidroins into fibers. Interestingly, the C-terminal β-sheets are similar to those in the amyloid fibrils characteristic of diseases such as Alzheimer's disease. This mechanism elegantly explains how spider silk

can form so quickly as well as how its formation can be confined to the spinning duct. Besides being essential to producing biomimetic spidroin fibers, knowing how spiders spin silk could give insights into natural ways of hindering the amyloid fibrils associated with disease.

Contact:

Anna Rising, Researcher SLU and KI, ph +46-70 974 48 88 anna.rising@ki.se

Jan Johansson, Professor, SLU and KI, +46-70-34 570 48

The article: http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001921

SLU:s vision: SLU är ett universitet i världsklass inom livs- och miljövetenskaper.

David Stephansson | www.mynewsdesk.com
Further information:
http://www.slu.se

Further reports about: C-terminal SLU Spin bicarbonate characteristic dioxide fibers fibrils microelectrodes proteins silk

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>