Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holding Energy By The Threads

06.03.2015

Drexel Researchers Spin Cotton Into Capacitive Yarn

While the pattern for making a wearable fabric battery has already been laid out, it’s now time to select the threads that will turn a textile into an energy storage device. That process is being driven by Drexel University doctoral student Kristy Jost, who’s threaded her way into the forefront of research on conductive yarns.


Drexel University

Using capacitive yarn, textiles and full garments could be used to store energy.

Using a process, called “Natural Fiber Welding,” which was developed by collaborator Paul C. Trulove at the U.S. Naval Academy, researchers are embedding functionalized materials—at the molecular level—into a cellulose-based yarn, like cotton. Jost, who is advised by Yury Gogotsi, PhD, Distinguished University and Trustee chair professor in the College of Engineering and Genevieve Dion, director of the Shima Seiki Haute Technology Laboratory and an assistant professor in the Antoinette Westphal College of Media Arts & Design, has taken this process to the next level. She and her team are using NFW to strategically alter yarn for a variety of uses, but the one they’re most interested in is energy storage.

“If energy textiles are going to be realized, figuring out the best way to functionalize our yarn is the first step,” Jost said. “Natural fiber welding is proving to be highly effective in producing yarns that we can tune for particular uses, including energy storage. This work is only possible because of the successful collaboration between Drexel’s Shima Seiki Haute Tech Laboratory, the A.J. Drexel Nanomaterials Institute, and the chemistry department at the U.S. Naval Academy.

To make it happen, the yarn is first treated with a molten salt, which causes the polymer chains to swell, thus opening the structure. Then they embed it with a functional material—such as activated carbon particles—by sliding the yarn through a syringe filled with a mixture of the material in the ionic liquid. The yarn is then pulled through the needle of the syringe, which physically presses the carbon into the fibers, and it is wrapped onto a spool. The ionic liquid is removed by washing the yarn with water, which also re-solidifies the cotton fiber, trapping carbon particles in the surface.

The result is a complex composite fibrous material that retains its original flexibility, but gains the capacitive properties of activated carbon. Much like conventional energy storage devices have metal plates to improve the electrical conductivity, the activated carbon-natural fiber welded yarn is twisted with a highly conductive stainless steel yarn prior to testing. Activated carbon on it’s own is not conductive enough for energy applications, so the stainless steel yarn allows the materials to be charged more easily.

“What’s unique about this process, is that we can use any commercially available yarn made of cellulose—cotton, linen, bamboo, viscose, rayon,” Dion said. “This adds another level of tune-ability, since we can weld thick or fine yarns, containing longer or shorter fibers, which can lead to textiles with unique mechanical properties. We use activated carbon for much of our research because it tends to be skin-friendly, and is commonly found in water filters. The yarn could be embedded with a variety of carbon nanomaterials, but we’re looking ahead at making a wearable garment, so concerns like skin irritation, come into play.”

This technique for embedding carbon particles into cellulose yarn is an important step on the way to producing energy storage textiles. That development is taken even further in a paper recently published in Advanced Energy Materials where several types of conductive yarn are tested and knit into full fabrics capable of storing energy using industrial knitting machines at the Shima Seiki Haute Technology Lab.

“When developing a capacitive yarn, it is best practice to determine if it can be woven or knitted,” Jost said “Otherwise how will we know if it can truly be used in a wearable application?”

“This field presents more and varied challenges than just working toward improved electrochemical performance,” Jost said. “Not all new materials and techniques will yield electrode yarn that are suitable for knitting. Our research is unique because it looks at both the electrochemical performance and the viability of the yarn for industrial manufacturing.”

Jost and her team saw this challenge play out in front of them as they moved from the creation of capacitive yarn to attempting to knit with it. The best capacitance results, which were on par with conventional supercapacitors, came from the cotton yarn twisted with steel prior to welding.

“This change in the order of assembly improved the accessibility of electrons to all of the coated carbon particles because they are processed with the steel,” Jost said. “As opposed to twisting them together after coating, where it was determined only about half of all the carbon was in good contact with the steel yarn. Unfortunately, despite excellent performance, none of the cotton yarns proved to knit without breaking.”

So the group moved on to test bamboo, linen and viscose/nylon blended yarns in hopes of finding a more durable combination. And while none of the three other yarn types produced the same high level of electrochemical performance as the cotton-based yarn, they were all strong enough to be knitted into a fabric without breaking.

“We believe that the longer fibers found in bamboo, linen and viscose yarns contributed to their strength and made them less likely to pull apart during the knitting process,” Jost said.

The team, in concert with researchers at the A.J. Drexel Nanomaterials Institute, is already developing knitted supercapacitors, while continuing to use explore new materials and fabrication processes.

Contact Information
Britt Faulstick
News Officer
bef29@drexel.edu
Phone: 215-895-2617

www.drexel.edu

Britt Faulstick | newswise

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>