Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-tech sensing illuminates concrete stress testing

20.07.2017

Using the principles of light, University of Leeds scientists have discovered a new way to measure the strength of modern forms of concrete - giving industry a better way to understand when it could fracture.

Their approach was based on applying a complex light-refracting coating, designed to display stress positions, to the surface of concrete beam samples.


A picture from a photonic camera showing how using the coating can create a candle-like 'flame' highlighting shear stress distribution in a sample concrete beam.

Credit: University of Leeds

The epoxy coating is 'birefringent' - it has the ability to split light waves in different directions in relation to the amount of stress acting in those directions, and reflecting back to a photonic camera. The camera then takes a picture showing where the stress levels are most extreme before cracks or fractures occur.

While the coating itself is not new, this research project was the first time it had been used to measure shear stress and assess concrete toughness against fractures.

Dr Joseph Antony from the School of Chemical and Process Engineering at the leading Russell Group UK university, who led the study together with researchers at the University of Qatar, said: "There are other methods to measure stress and strain levels in the engineering sector, but we do not believe any of them can measure shear strain directly with high precision, which is most relevant to assess the failure strength of materials.

"The photonic method we developed can directly measure sheer strain, even on opaque materials. Until now, photonic and optical methods of measurement have only been associated with transparent materials."

The results using the new method compared favourably with conventional methods of stress testing, which have relied on combined experimental and numerical or analytical approaches.

The rise of composite concretes now used extensively in the construction industry prompted the team to look for new ways to study the material's strength.

Concrete has traditionally been made with cement, gravel and sand but has changed significantly in recent decades. It can now include numerous waste products including plastic pellets, in order to reduce the levels of natural materials used and to recycle waste products.

Dr Antony added: "Our study was aimed at developing a method by which plastic or polymer waste materials, in this case from Qatar, could be used as valuable ingredients in developing new engineering products.

"By working with industries which recycle the waste products into micron sized particles, we had direct insight into how they are used, meaning our study could be much more informed by industry requirements."

Finding a new way to show industry the precise toughness of these new forms of composite concrete meant there could be more reliance on their use as a building material.

Dr Antony explained how concrete made with waste plastic products had shown superior qualities to traditional ingredients, but his team wanted to ensure it could sustain service loads without fracturing.

He added: "We believe this new photonic or optical approach to fracture testing could be applied not only to develop sustainable manufacturing using materials that would otherwise be discarded as waste, but also in other diverse engineering designs including mechanical, civil, materials, electronics and chemical engineering applications."

###

The research was funded by the Qatar National Research Fund, and is published in Scientific Reports.

Media Contact

Peter Le Riche
p.leriche@leeds.ac.uk
44-113-343-2049

 @universityleeds

http://www.leeds.ac.uk 

Peter Le Riche | EurekAlert!

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>