Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Quality Perovskite Materials Developed Capable of Utilizing Long-Wavelength Sunlight

04.11.2015

A research group from National Institute for Materials Science (NIMS) in Japan has developed the new method to fabricate high-quality perovskite materials capable of utilizing long-wavelength sunlight of 800 nm or longer.

Moving toward the Realization of Low-Cost, High-Efficiency Solar Cells


Figure: (a) Fabrication method for a high-quality perovskite material; (b) X-ray diffraction patterns of perovskite materials prepared with different methods. The x-axis represents the intensity of X-ray diffraction while the y-axis denotes the X-ray diffraction angle.

Copyright : NIMS

A NIMS research team led by Liyuan Han, director of the Photovoltaic Materials Unit, has developed the world’s first method to fabricate high-quality perovskite materials capable of utilizing long-wavelength sunlight of 800 nm or longer.

Compared to conventional methods, this method enables the creation of perovskite materials that have a 40-nm wider optical absorption spectrum, a high short-circuit current and high open-circuit voltage. Thus, this method is regarded as a new approach to enhance the efficiency of perovskite solar cells.

The currently available perovskite solar cells possess optical absorption spectra skewed toward shorter wavelengths. To improve the energy conversion efficiency of these cells, it is vital to develop perovskite materials with optical absorption spectra expanded to include longer wavelengths.

Accordingly, several research institutes are developing perovskite materials, (MA)xFA1—xPbI3, which include two types of cations, MA and FA, capable of absorbing light in the longer wavelength region. However, these cations have demerits: their mixing ratio and crystallization temperature are difficult to control. Moreover, due to their tendency to form a mixed crystal phase, there had been no effective method established to fabricate high-purity, single-crystalline perovskite materials.

To resolve these issues, we developed a new method to fabricate a new type of mixed cation-based perovskite material. We first fabricated a pure, single-crystalline precursor material, (FAI)1—xPbI2, under altering temperatures. Then, we performed a reaction between the precursor and MAI (methylammonium iodide).

The resulting perovskite material, (MA)xFA1—xPbI3, was a single crystalline phase and had a long fluorescence lifetime. These observations indicated that electrons in the material rarely recombine and they have long lifetimes. The optical absorption spectrum of the solar cells employing this material covered up to 840 nm, which was 40 nm wider than the spectrum of conventional perovskite material (MA3PbI3). As a result, the solar cells we developed obtained 1.4 mA/cm2 higher short-circuit current than the MAPbI3 solar cells that were manufactured under the same conditions.

In future studies, we intend to develop high-quality perovskite solar cells capable of utilizing a broader spectrum of sunlight by adjusting the ratio of the two cations.

A part of these results were obtained through research activities under the research topic “Device physics of dye-sensitized solar cells” in the research area “Creative research for clean energy generation using solar energy” (Research Supervisor: Masafumi Yamaguchi, Principal Professor, Toyota Technological Institute) specified in the Core Research of Evolutional Science and Technology (CREST) program sponsored by the Japan Science and Technology Agency (JST).


Associated links
Original article from NIMS

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>