Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Durability and Efficiency of 1 cm2 Size Perovskite Solar Cells

16.11.2015

A research group led by National Institute for Materials Science, Japan, improved the power conversion efficiency of perovskite solar cells to over 16% while employing cells that were greater than 1 cm2.

The cells have passed 1,000 Hours of Light Soaking (AM 1.5G, 100 mW/cm2) test, which is considered to be a basic criterion for practical use. These achievements were made by replacing the conventional organic materials with heavily doped inorganic metal oxide materials as the electron and hole extraction layers of the cells.


Distribution of power conversion efficiencies (PCEs) obtained from the perovskite solar cells fabricated by the research group.

Copyright : NIMS


Results of continuous exposure of perovskite solar cells to solar light (light intensity: 100 mW/cm2). The black line represents cells that were not exposed to light while the red line represents cells that were exposed to light.

Copyright : NIMS

A research group led by Dr. Liyuan Han, Director of the Photovoltaic Materials Unit, National Institute for Materials Science (NIMS), Japan, improved the power conversion efficiency (PCE) of perovskite solar cells to over 16% while employing cells that were greater than 1 cm2.

The high efficiency cells also passed the durability test (exposure to AM 1.5G 100 mW/cm2 sunlight for 1,000 hours), which is considered to be a basic criterion for practical use. These achievements were made by replacing the conventional organic materials with inorganic materials as the electron and hole extraction layers of the solar cells.

There are high expectations for perovskite solar cells as they may be produced at lower cost than silicon solar cells. However, high efficiency perovskite solar cells have often been reached with poor stability and small area typically less than 0.1 cm2.

As such a small device size is prone to induce measurement errors, an obligatory minimum cell area of >1 cm2 is required for certified PCEs to be recorded in the standard “Solar Cell Efficiency Tables” that allows the comparison of competing technologies. Therefore, in order to realize practical use of perovskite solar cells, it is urgent to conduct studies using larger cells and attain more reliable PCEs.

To solve these issues, the research group first replaced the conventional organic materials with robust inorganic materials for use in electron and hole extraction layers. Because these layers fabricated with inorganic metal oxide materials have high electrical resistance, it was necessary to reduce the thickness of the layers to several nanometers (nm).

However, as the area of these thin layers increases, the occurrence of defects called pinholes also increases, leading to decreased PCEs. To deal with this problem, the research group increased the electrical conductivity of these layers by more than 10 times through heavily doping in both electron and hole extraction layers.

In this way, the group successfully fabricated layers that have fewer pinholes over wide areas and are applicable at thicknesses of up to 10 to 20 nm. Using these layers, a PCE of 16% was repeatedly attained while employing cells that were greater than 1 cm2.

Furthermore, the use of inorganic materials both in electron and hole extraction layers contributed to the control of PCE reduction within 10% even after undergoing 1,000 hours of continuous exposure to sunlight at an intensity of 1 sun, demonstrating outstanding reliability.

Based on these results, the group aims to develop more efficient light absorbing material capable of utilizing a greater amount of sunlight and precisely control the interfaces in the devices, for achieving higher PCEs and stability.

This study was conducted under the research topic “Device physics of dye-sensitized solar cells” in the research area “Creative research for clean energy generation using solar energy (research supervisor: Masafumi Yamaguchi, Principal Professor, Toyota Technological Institute)” as part of the Strategic Basic Research Programs (specifically the CREST program) sponsored by the Japan Science and Technology Agency (JST). The study was published in the online version of Science on October 29, 2015.

(This study was published in the online version of Science on October 29, 2015: W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, A. Islam, M. Gratzel and L. Han: Efficient and stable large-area perovskite solar cells with inorganic charge-extraction layers [DOI: 10.1126/science.aad1015]).

Associated links
Original article from NIMS

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>