Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Membrane Could Lead to Better Fuel Cells, Water Filters

20.03.2015

An atomically thin membrane with microscopically small holes may prove to be the basis for future hydrogen fuel cell, water filtering and desalination membranes, according to a group of 15 theorists and experimentalists, including three theoretical researchers from Penn State.

The team, led by Franz Geiger of Northwestern University, tested the possibility of using graphene, the robust single atomic layer of carbon, as a separation membrane in water and found that naturally occurring defects, essentially a few missing carbon atoms, allowed hydrogen protons to cross the barrier at unprecedented speeds.


Murali Raju, Penn State

A figure showing the proton transfer channel across a quad-defect in graphene, as obtained from a ReaxFF molecular dynamics simulation.

Whereas many researchers strive to make graphene defect-free in order to exploit its superior electronic properties, Geiger’s team found that graphene required the vacancies in order to create water channels through the membrane.

Computer simulations carried out at Penn State and the University of Minnesota showed the protons were shuttled across the barrier via hydroxyl-terminated atomic defects, that is, by oxygen hydrogen groups linked at the defect.

The paper, titled “Aqueous proton transfer across single-layer graphene,” will be published March 17 in the journal Nature Communications.

“Our simulations and experiments showed that you need to have at least four carbon vacancies and some sort of channel to overcome the energy barrier that would normally prevent the protons from crossing to the other side,” says Adri van Duin, associate professor of mechanical and nuclear engineering at Penn State, who used reactive force field calculations to do dynamical, atomistic scale simulations of the process.

“If we can learn how to engineer the defects and the defect size, we could make an effective separation membrane. Although it still requires a lot of design work, clearly this looks highly attractive for many applications, including desalinization.”

It may also work for a new, less complicated design for fuel cells in the future, Geiger believes. “All you need is slightly imperfect single-layer graphene,” he says.
Penn State co-authors are former Ph.D. student Muralikrishna Raju, now a post-doc at Stanford, post-doc Weiwei Zhang and van Duin.

Other co-authors include Oak Ridge National Laboratory’s Raymond Unocic, Robert Sacci, Ivan Vlassiouk, Pasquale Fulvio, Panchapakesan Ganesh, David Wesolowski and Sheng Dai; Northwestern University’s Jennifer Achtyl and Geiger; and University of Virginia’s Lijun Xu, Yu Cai and Matthew Neurock (all three now at the University of Minnesota).
This work was supported by the FIRST Center, an EFRC funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Microscopy was conducted as part of a user proposal at the Center for Nanophase Materials Sciences, an Office of Science User Facility at ORNL.

For a video simulation of the transport process, visit

https://www.youtube.com/watch?v=of-tmv05vw0&feature=youtu.be

Contact Information
Walter Mills
Associate Editor Publications
wem12@psu.edu
Phone: 814-865-0285

Walter Mills | newswise

Further reports about: Basic Energy Sciences Cells Energy Membrane Water defects graphene protons single-layer graphene

More articles from Materials Sciences:

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

nachricht Missing atoms in a forgotten crystal bring luminescence
11.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>