Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene ‘Gateway’ Discovery Opens Possibilities for Improved Energy Technologies

18.03.2015

Graphene, a strong, lightweight carbon honeycombed structure that’s only one atom thick, holds great promise for energy research and development. Recently scientists with the Fluid Interface Reactions, Structures, and Transport (FIRST) Energy Frontier Research Center (EFRC), led by the US Department of Energy’s Oak Ridge National Laboratory, revealed graphene can serve as a proton-selective permeable membrane, providing a new basis for streamlined and more efficient energy technologies such as improved fuel cells.

The work, published in the March 17 issue of Nature Communications, pinpoints unprecedented proton movement through inherent atomic-scale defects, or gaps, in graphene.


Computer simulations show a single proton (pink) can cross graphene by passing through the world’s thinnest proton channel. Image courtesy of Franz Geiger, Northwestern University

“Now you’re able to take a barrier that you can make very thin, like graphene, and change it so you build gates on a molecular scale,” says principal investigator Franz Geiger of Northwestern University, the senior author and a FIRST researcher.

The foundation for the study was laid six years ago at ORNL as part of DOE’s EFRC initiative to accelerate the scientific breakthroughs needed to build a new 21st century energy economy. The goal of FIRST is to use interdisciplinary research to develop both a fundamental understanding and validated, predictive models of the unique nanoscale environment at fluid–solid interfaces, which will enable transformative advances in electrical energy storage and catalysis, according to FIRST Director David Wesolowski.

Of the paper’s 15 authors, all are FIRST researchers with diverse science backgrounds ranging from chemistry to computer modeling. Pooling their expertise, the scientists investigated the mechanisms and structure of graphene using a multifaceted theoretical, experimental, materials synthesis, and computational approach.

Science from the ground up
With a tight lattice of carbon reminiscent of chicken wire, pristine graphene was believed to be impenetrable. Current studies, however, have shown that in aqueous solutions, graphene allows surprising numbers of protons to pass through its atomic structure.

The researchers’ first step was to create an atomically thin layer of graphene on fused silica, an effort led by ORNL’s Ivan Vlassiouk, an expert in the synthesis of two-dimensional materials including graphene using chemical vapor deposition techniques.

Then Raymond Unocic at ORNL’s Center for Nanophase Materials Sciences, a DOE Office of Science User Facility, analyzed the graphene using an aberration-corrected scanning transmission electron microscope (STEM). The high-powered microscope, a state-of-the-art technology, allowed direct imaging of individual carbon atoms of the adjoining hexagons that compose graphene.

Unocic and associates were able to focus on rare, naturally occurring atomic-scale defects in graphene that allowed aqueous protons to “hop” through holes in the thin, strong single layer.

Regions of missing atoms are so small that they cannot be detected by standard microscopic techniques, so access to ORNL’s STEM facility was critical. “To be able to see these images—the individual positions of the carbon atoms in the graphene—is just spectacular,” says Geiger.

The scientists later isolated the paths of movement the protons followed. By creating a single-layer sliver of graphene on silica glass, separated from the glass by mere molecules of water, the scientists designed a trap for the hopping protons. Changes in the acidity of the aqueous solution on either side of the graphene layer revealed the covert gating mechanism in the material’s structure, which they were able to detect using a laser technique called second harmonic generation.

“The major advantage of second harmonic generation,” says Northwestern’s Jennifer Achtyl, lead author of the Nature Communication article, “is that it is highly sensitive to chemistry at the interface or, in this case, the nanometer-thick environment between the aqueous solution and the surface of the silica. This acute sensitivity and the fact that these experiments can be run nondestructively were critical to our ability to capture experimental evidence of the transfer of protons through graphene.”

Using computational methods to analyze the configurations of defects in the graphene, the FIRST researchers isolated proton-transfer occurrences at defect areas. In addition, the team demonstrated that even the smallest of molecules, hydrogen and helium, are unable to pass through the proton gates under normal conditions.

“Finally, when we were able to put all the pieces together, we made a conclusive statement that—even though there’s a high energetic barrier for proton transport through graphene—if you lower that energetic barrier, you can allow protons to pass right through,” says Unocic. “This opens a new pathway for the atomic-scale engineering of graphene.”

Key to energy’s future?
Although the scientists focused on the fundamental mechanics of graphene surfaces, the results of this study open the doors for further graphene development across the energy economy and beyond.

With fuel cells, to name but one area of promise, issues range from cumbersome size to fleeting efficiency. Isolating single ion-transfer mechanisms and structural gaps in graphene could facilitate improvements in the production, transportation and use of energy.

“We’ve looked at this problem from really as many sides as you can possibly look at it with today’s technology,” Geiger says. “It makes a very strong case for taking the effect that we’ve observed and the mechanism that we’ve found and doing something technologically relevant with it. There are so many people working with graphene that to show how aqueous protons actually transfer across graphene will make a big difference.”

Coauthors of “Aqueous Proton Transfer Across Single Layer Graphene” are ORNL’s Unocic, Robert Sacci, Vlassiouk, Pasquale Fulvio, Panchapakesan Ganesh, Wesolowski and Sheng Dai; Northwestern University’s Achtyl and Geiger; University of Virginia’s Lijun Xu, Yu Cai and Matthew Neurock (all three now at the University of Minnesota); and Pennsylvania State University’s Muralikrishna Raju, Weiwei Zhang and Adri van Duin.

This work was supported by the FIRST Center, an EFRC funded by the US Department of Energy’s Office of Science. Microscopy was conducted as part of a user proposal at ORNL’s Center for Nanophase Materials Sciences.
ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.–by Ashanti B. Washington

Contact Information
Dawn Levy
Communications
865.576.6448; levyd@ornl.gov

Dawn Levy | newswise
Further information:
http://www.ornl.gov/news

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>