Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene "cut and paste" with microwaves

23.12.2014

Scientists in Russian Academy of Sciences, Moscow have revealed a variety of transformations taking place on carbon surface under the influence of metal nanoparticles and microwaves.

Graphene "cut and paste" with metal nanoparticles was carried out under microwave irradiation. The study revealed unique processes occurring on the carbon layers under the influence of metal nanoparticles heated by microwave irradiation. Understanding the processes taking place in Metal/Carbon systems is crucial for development of new generation of highly efficient catalysts for organic synthesis and chemical industry. The authors described the key transformations responsible for catalyst evolution in connection with preparation of nanostructured Metal/Carbon systems [1].


Folding and transforming carbon rings.

Copyright : Ananikov Laboratory (AnanikovLab.ru)


Figure 1. Metal nanoparticles heated to high temperature initiate the process of "cutting" of the carbon layers (etching of graphene), cyclization of nanoribbons, formation of cycloparaphenylenes, and nanotube growth.

Copyright : Ananikov Laboratory (AnanikovLab.ru)


Figure 2. Plausible formation of (6,6)-nanotube from a flat graphene sheet. Reactions (1), (2) and (3) correspond to initial graphene sheets containing different amounts of hydrogen atoms at the edges. Copyright : Ananikov Laboratory (AnanikovLab.ru)

The study, carried out in the laboratory of Prof. V.P.Ananikov at Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, discovered a variety of processes occurring on the surface of carbon material upon a contact with hot metal nanoparticles. Metal nanoparticles, heated by microwave radiation, caused significant morphological changes of the carbon surface: formation of patterns of pits and channels, penetration inside the carbon material and direct growth of carbon nanotubes.

As it is widely accepted now, discovery and systematic study of carbon nanotubes was one of the prominent groundbreaking points at the beginning of nanotechnology era. Carbon nanotubes are nanoscale tubular structures consisting of carbon atoms arranged in the interconnected six-membered rings within a cylindrical wall.

From a certain point of view carbon nanotube may be represented as a graphene sheet (flat sheet of monoatomic thickness) rolled into a cylinder and carbon-glued at the edges. Direct access to carbon nanotubes starting from graphene (and especially starting from much cheaper precursor – graphene layers in graphite) would be an outstanding process of great practical interest. The questions appear: how easy is to cut graphite sheets and to roll them up? Does it violate thermodynamic factors?

The present study, published in the ACS Catalysis journal, discovered a series of processes mediated in metal-carbon systems under microwave irradiation. "Cutting" of carbon slices by hot metal particles was clearly observed by field-emission scanning electron microscopy (FE-SEM). "Pasting" of carbon atoms into a new location has resulted in a growth of carbon nanotubes on the surface of graphite – the process was also observed in the experiment under an inert atmosphere.

In the theoretical modeling the authors considered the following possibility: at the first stages graphene sheet can be cut into nanoribbons of one aromatic ring wide (Figure 1). Then, each nanoribbon is rolled into cycloparaphenylenes – these molecules are known and were described previously. On the later stages, cycloparaphenylene rings are joined together to form the nanotube. Important stages of this process were modeled by quantum chemical calculations involving density functional theory.

As shown by theoretical modeling, the energy of such process depends strongly on the initial state of the edges of graphene sheet. If the edges are capped with hydrogen (reaction 1, Figure 2), the overall process of nanotube formation reaction is accompanied by releasing of 20 hydrogen molecules and it is energetically unfavorable (increase in energy is ~2.5 kcal/mol per one carbon atom).

Reaction (2) involves partially hydrogenated graphene edges and it is energetically more favorable (energy decrease is ~1.5 kcal/mol per one carbon atom). The most favorable process from thermodynamic point of view is the formation of a nanotube from a fully dehydrogenated graphene sheet (reaction 3). This process was accompanied by an energy decrease of ~4.6 kcal/mol per one carbon atom.

Important findings, described in the article, deal with transformation of carbon support in Metal/Carbon catalysts. For a long time it was considered that carbon support is an inert (innocent) material used only for supporting (anchoring) of metal nanoparticles. The present study has clearly shown that it is not always the case. Metal particles do interact with carbon support and the interaction leads to amazing modification of the morphology of Metal/Carbon systems. Understanding the nature of this interaction plays a key role in developing efficient and stable catalytic systems. Evolution of the catalyst during chemical transformation may be responsible for deactivation of the catalyst and loss of catalytic activity.


Reference
[1] Evgeniy O. Pentsak, Evgeniy G. Gordeev, Valentine P. Ananikov, «Noninnocent Nature of Carbon Support in Metal/Carbon Catalysts: Etching/Pitting vs Nanotube Growth under Microwave Irradiation», ACS Catalysis, 2014, Vol. 4, pp. 3806−3814.

DOI: 10.1021/cs500934g.
On-line link: http://dx.doi.org/10.1021/cs500934g
Cover picture: http://pubs.acs.org/action/showLargeCover?jcode=accacs&vol=4&issue=11

Associated links
http://AnanikovLab.ru

Valentine Ananikov | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>