Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene "cut and paste" with microwaves

23.12.2014

Scientists in Russian Academy of Sciences, Moscow have revealed a variety of transformations taking place on carbon surface under the influence of metal nanoparticles and microwaves.

Graphene "cut and paste" with metal nanoparticles was carried out under microwave irradiation. The study revealed unique processes occurring on the carbon layers under the influence of metal nanoparticles heated by microwave irradiation. Understanding the processes taking place in Metal/Carbon systems is crucial for development of new generation of highly efficient catalysts for organic synthesis and chemical industry. The authors described the key transformations responsible for catalyst evolution in connection with preparation of nanostructured Metal/Carbon systems [1].


Folding and transforming carbon rings.

Copyright : Ananikov Laboratory (AnanikovLab.ru)


Figure 1. Metal nanoparticles heated to high temperature initiate the process of "cutting" of the carbon layers (etching of graphene), cyclization of nanoribbons, formation of cycloparaphenylenes, and nanotube growth.

Copyright : Ananikov Laboratory (AnanikovLab.ru)


Figure 2. Plausible formation of (6,6)-nanotube from a flat graphene sheet. Reactions (1), (2) and (3) correspond to initial graphene sheets containing different amounts of hydrogen atoms at the edges. Copyright : Ananikov Laboratory (AnanikovLab.ru)

The study, carried out in the laboratory of Prof. V.P.Ananikov at Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, discovered a variety of processes occurring on the surface of carbon material upon a contact with hot metal nanoparticles. Metal nanoparticles, heated by microwave radiation, caused significant morphological changes of the carbon surface: formation of patterns of pits and channels, penetration inside the carbon material and direct growth of carbon nanotubes.

As it is widely accepted now, discovery and systematic study of carbon nanotubes was one of the prominent groundbreaking points at the beginning of nanotechnology era. Carbon nanotubes are nanoscale tubular structures consisting of carbon atoms arranged in the interconnected six-membered rings within a cylindrical wall.

From a certain point of view carbon nanotube may be represented as a graphene sheet (flat sheet of monoatomic thickness) rolled into a cylinder and carbon-glued at the edges. Direct access to carbon nanotubes starting from graphene (and especially starting from much cheaper precursor – graphene layers in graphite) would be an outstanding process of great practical interest. The questions appear: how easy is to cut graphite sheets and to roll them up? Does it violate thermodynamic factors?

The present study, published in the ACS Catalysis journal, discovered a series of processes mediated in metal-carbon systems under microwave irradiation. "Cutting" of carbon slices by hot metal particles was clearly observed by field-emission scanning electron microscopy (FE-SEM). "Pasting" of carbon atoms into a new location has resulted in a growth of carbon nanotubes on the surface of graphite – the process was also observed in the experiment under an inert atmosphere.

In the theoretical modeling the authors considered the following possibility: at the first stages graphene sheet can be cut into nanoribbons of one aromatic ring wide (Figure 1). Then, each nanoribbon is rolled into cycloparaphenylenes – these molecules are known and were described previously. On the later stages, cycloparaphenylene rings are joined together to form the nanotube. Important stages of this process were modeled by quantum chemical calculations involving density functional theory.

As shown by theoretical modeling, the energy of such process depends strongly on the initial state of the edges of graphene sheet. If the edges are capped with hydrogen (reaction 1, Figure 2), the overall process of nanotube formation reaction is accompanied by releasing of 20 hydrogen molecules and it is energetically unfavorable (increase in energy is ~2.5 kcal/mol per one carbon atom).

Reaction (2) involves partially hydrogenated graphene edges and it is energetically more favorable (energy decrease is ~1.5 kcal/mol per one carbon atom). The most favorable process from thermodynamic point of view is the formation of a nanotube from a fully dehydrogenated graphene sheet (reaction 3). This process was accompanied by an energy decrease of ~4.6 kcal/mol per one carbon atom.

Important findings, described in the article, deal with transformation of carbon support in Metal/Carbon catalysts. For a long time it was considered that carbon support is an inert (innocent) material used only for supporting (anchoring) of metal nanoparticles. The present study has clearly shown that it is not always the case. Metal particles do interact with carbon support and the interaction leads to amazing modification of the morphology of Metal/Carbon systems. Understanding the nature of this interaction plays a key role in developing efficient and stable catalytic systems. Evolution of the catalyst during chemical transformation may be responsible for deactivation of the catalyst and loss of catalytic activity.


Reference
[1] Evgeniy O. Pentsak, Evgeniy G. Gordeev, Valentine P. Ananikov, «Noninnocent Nature of Carbon Support in Metal/Carbon Catalysts: Etching/Pitting vs Nanotube Growth under Microwave Irradiation», ACS Catalysis, 2014, Vol. 4, pp. 3806−3814.

DOI: 10.1021/cs500934g.
On-line link: http://dx.doi.org/10.1021/cs500934g
Cover picture: http://pubs.acs.org/action/showLargeCover?jcode=accacs&vol=4&issue=11

Associated links
http://AnanikovLab.ru

Valentine Ananikov | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>