Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas gives laser-induced graphene super properties

16.05.2017

Rice University scientists who invented laser-induced graphene (LIG) for applications like supercapacitors have now figured out a way to make the spongy graphene either superhydrophobic or superhydrophilic.

And it's a gas.

Until recently, the Rice lab of James Tour made LIG only in open air, using a laser to burn part of the way through a flexible polyimide sheet to get interconnected flakes of graphene. But putting the polymer in a closed environment with various gases changed the product's properties.


This is a custom chamber built by researchers at Rice University allowed them to refine their process for creating laser-induced graphene.

Credit: Tour Group/Rice University

Forming LIG in argon or hydrogen makes it superhydrophobic, or water-avoiding, a property highly valued for separating water from oil or de-icing surfaces. Forming it in oxygen or air makes it superhydrophilic, or water-attracting, and that makes it highly soluble.

The research at Rice and at Ben-Gurion University in Israel is the subject of a paper in Advanced Materials.

"Labs could make graphene either hydrophobic or hydrophilic before, but it involved multiple steps of either wet-chemical or chemical vapor deposition processes," Tour said. "We're doing this in one step with relatively cheap materials in a homemade atmosphere chamber."

The labs got a bonus when they discovered that fabricating LIG in oxygen increased the number of defects -- 5- and 7-atom rings -- in the graphene flakes, improving its capacitance and its performance when used as an electrode material for microsupercapacitors.

Changes in the chemical content of the gas and even changes in the direction of the laser raster pattern altered the material, leading the researchers to believe LIG's hydrophobic or -philic properties could be tuned.

They also discovered when they scraped graphene off of a hydrophilic sheet of polymer and turned it into a film, the result was hydrophobic instead. "That leads us to believe the surface orientation of LIG's flakes have a lot to do with how it reacts with water," Tour said. "If the edges are more exposed, it appears to be hydrophilic; if the basal planes are more exposed, their hydrophobic properties take over."

What makes a material "super" in either direction is the angle at which it encounters water. A material with a contact angle of 0 degrees is considered superhydrophilic. In this case, water would lay on the material in a puddle. If the angle is 150 degrees or more, that's superhydrophobic; the angle is determined by how much the water beads. (An angle of 180 degrees would be a sphere sitting perfectly on top of LIG.)

The discovery that surface type and chemistry affect LIG should also allow some leeway in adjusting the material's properties, Tour said. In fact, when they used a sulfur/fluorine gas to make it, they raised LIG's superhydrophobicity to 160 degrees.

###

Yilun Li, a graduate student at Rice, is lead author of the paper. Co-authors are Rice graduate students Duy Xuan Luong and Jibo Zhang, undergraduate Yash Tarkunde, research scientist Carter Kittrell and former postdoctoral researcher Yongsung Ji; and graduate student Franklin Sargunaraj and co-principal investigator Christopher Arnusch, a lecturer at the Zuckerberg Institute for Water Research at Ben Gurion University of the Negev, Israel. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative and the Vietnam Education Foundation supported the research.

Read the abstract at http://dx.doi.org/10.1002/adma.201700496

This news release can be found online at http://news.rice.edu/2017/05/15/gas-gives-laser-induced-graphene-super-properties-2/

Follow Rice News and Media Relations via Twitter @RiceUNews

Videos:

https://www.youtube.com/watch?v=_xFBDkQH7GA

Water rolls off a superhydrophilic laser-induced graphene pattern placed inside a superhydrophobic LIG frame. (Credit: Tour Group/Rice University)

https://www.youtube.com/watch?v=qAuyVgYI9m8

A water droplet bounces on the surface of laser-induced graphene with a sulfur and fluorine gas in the chamber. (Credit: Tour Group/Rice University)

Related materials:

Rice University's laser-induced graphene makes simple, powerful energy storage possible: https://youtu.be/NqIa5j0Oo9E

Tour Group: http://www.jmtour.com

Arnusch Laboratory: http://arnuschlab.weebly.com

Wiess School of Natural Sciences: http://natsci.rice.edu

Images for download:

http://news.rice.edu/files/2017/04/0424_LIG-1-web-1w2w8p0.jpeg

Laser-induced graphene created in the presence of argon gas is superhydrophobic, meaning it avoids water. The process developed at Rice University makes materials that can be superhydrophilic or superhydrophobic from inexpensive materials and in one step. (Credit: Tour Group/Rice University)

http://news.rice.edu/files/2017/04/0424_LIG-6-web-2ho6xbi.jpg

Superhydrophobic (water-avoiding) laser-induced graphene created in the presence of argon gas could be useful for de-icing applications or separating water and oil. (Credit: Tour Group/Rice University)

http://news.rice.edu/files/2017/04/0424_LIG-4-web-1mmeudq.jpeg

A custom chamber built by researchers at Rice University allowed them to refine their process for creating laser-induced graphene. (Credit: Tour Group/Rice University)

http://news.rice.edu/files/2017/04/0424_LIG-5-web-2bfney5.jpg

A custom-built chamber allows Rice University researchers to grow laser-induced graphene in various environments. The laser is fired at polymer through the zinc-selenium window. (Credit: Tour Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

David Ruth | EurekAlert!

Further reports about: chamber graphene hydrophilic hydrophobic material sulfur

More articles from Materials Sciences:

nachricht Borophene shines alone as 2-D plasmonic material
21.11.2017 | Rice University

nachricht Quantum dots amplify light with electrical pumping
21.11.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>