Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Framework materials yield to pressure

11.06.2015

Pressure is a powerful thermodynamic variable that enables the structure, bonding and reactivity of matter to be altered. In materials science it has become an indispensable research tool in the quest for novel functional materials.

Materials scientists can exploit the effectiveness of pressure for probing and tuning structural, mechanical, electronic, magnetic and vibrational properties of materials in situ; crystallography plays a crucial role, enabling on the one hand the unravelling of structural phenomena through a better understanding of interactions, and on the other shedding light on the correlation of structure and properties [Fabbiani (2015), Acta Cryst. B71, 247-249; doi: 10.1107/S2052520615009427].


This is a cobalt II octahedral packing diagram as viewed in the (001) plane.

Credit: Yakovenko et al

With high pressure promoting effects such as magnetic crossover, spin transitions, negative linear compressibility, changes in proton conductivity, or even phase transitions that generate porous structures, high-pressure crystallographic studies on dense framework materials are on the rise.

More generally, coordination compounds are a fascinating class of materials for high-pressure crystallographic studies, compared with purely organic compounds; they have an inherent extra degree of flexibility for responding to moderate applied pressures, as the geometry at the metal centre can undergo marked changes, whereas other primary bond distances and angles remain largely unaffected.

A group of scientists [Yakovenko et al. (2015), Acta Cryst. B71, 252-257; doi: 10.1107/S2052520615005867] demonstrate that pressure offers a novel approach for generating new phases and exploring the structure-property relationships of molecular materials.

In their study the researchers present a high-pressure crystallographic study of α -Co(dca)2, including the structural determination of the high-pressure phase γ -Co(dca)2. The pressure-dependence of the atomic structure was probed within a diamond-anvil cell using synchrotron-based powder diffraction methods.

Future work from the group based at Argonne National Laboratory will involve investigations of the pressure-dependent structures of further transition metal dicyanamides, including members of the iso-structural α-MII(dca)2 family as well as other polymorphs, to uncover any universality or metal-ion dependence associated with the α?γ transition, and if other new phases can be generated.

Media Contact

Dr. Jonathan Agbenyega
ja@iucr.org
44-124-434-2878

 @iucr

http://www.iucr.org 

Dr. Jonathan Agbenyega | EurekAlert!

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>